161 research outputs found

    Attack Detection in Sensor Network Target Localization Systems with Quantized Data

    Full text link
    We consider a sensor network focused on target localization, where sensors measure the signal strength emitted from the target. Each measurement is quantized to one bit and sent to the fusion center. A general attack is considered at some sensors that attempts to cause the fusion center to produce an inaccurate estimation of the target location with a large mean-square-error. The attack is a combination of man-in-the-middle, hacking, and spoofing attacks that can effectively change both signals going into and coming out of the sensor nodes in a realistic manner. We show that the essential effect of attacks is to alter the estimated distance between the target and each attacked sensor to a different extent, giving rise to a geometric inconsistency among the attacked and unattacked sensors. Hence, with the help of two secure sensors, a class of detectors are proposed to detect the attacked sensors by scrutinizing the existence of the geometric inconsistency. We show that the false alarm and miss probabilities of the proposed detectors decrease exponentially as the number of measurement samples increases, which implies that for sufficiently large number of samples, the proposed detectors can identify the attacked and unattacked sensors with any required accuracy

    Testing the Structure of a Gaussian Graphical Model with Reduced Transmissions in a Distributed Setting

    Full text link
    Testing a covariance matrix following a Gaussian graphical model (GGM) is considered in this paper based on observations made at a set of distributed sensors grouped into clusters. Ordered transmissions are proposed to achieve the same Bayes risk as the optimum centralized energy unconstrained approach but with fewer transmissions and a completely distributed approach. In this approach, we represent the Bayes optimum test statistic as a sum of local test statistics which can be calculated by only utilizing the observations available at one cluster. We select one sensor to be the cluster head (CH) to collect and summarize the observed data in each cluster and intercluster communications are assumed to be inexpensive. The CHs with more informative observations transmit their data to the fusion center (FC) first. By halting before all transmissions have taken place, transmissions can be saved without performance loss. It is shown that this ordering approach can guarantee a lower bound on the average number of transmissions saved for any given GGM and the lower bound can approach approximately half the number of clusters when the minimum eigenvalue of the covariance matrix under the alternative hypothesis in each cluster becomes sufficiently large

    Target Localization Accuracy Gain in MIMO Radar Based Systems

    Full text link
    This paper presents an analysis of target localization accuracy, attainable by the use of MIMO (Multiple-Input Multiple-Output) radar systems, configured with multiple transmit and receive sensors, widely distributed over a given area. The Cramer-Rao lower bound (CRLB) for target localization accuracy is developed for both coherent and non-coherent processing. Coherent processing requires a common phase reference for all transmit and receive sensors. The CRLB is shown to be inversely proportional to the signal effective bandwidth in the non-coherent case, but is approximately inversely proportional to the carrier frequency in the coherent case. We further prove that optimization over the sensors' positions lowers the CRLB by a factor equal to the product of the number of transmitting and receiving sensors. The best linear unbiased estimator (BLUE) is derived for the MIMO target localization problem. The BLUE's utility is in providing a closed form localization estimate that facilitates the analysis of the relations between sensors locations, target location, and localization accuracy. Geometric dilution of precision (GDOP) contours are used to map the relative performance accuracy for a given layout of radars over a given geographic area.Comment: 36 pages, 5 figures, submitted to IEEE Transaction on Information Theor
    • …
    corecore