2 research outputs found

    Antiviral screening identifies adenosine analogs targeting the endogenous dsRNA Leishmania RNA virus 1 (LRV1) pathogenicity factor.

    Get PDF
    The endogenous double-stranded RNA (dsRNA) virus Leishmaniavirus (LRV1) has been implicated as a pathogenicity factor for leishmaniasis in rodent models and human disease, and associated with drug-treatment failures in Leishmania braziliensis and Leishmania guyanensis infections. Thus, methods targeting LRV1 could have therapeutic benefit. Here we screened a panel of antivirals for parasite and LRV1 inhibition, focusing on nucleoside analogs to capitalize on the highly active salvage pathways of Leishmania, which are purine auxotrophs. Applying a capsid flow cytometry assay, we identified two 2'-C-methyladenosine analogs showing selective inhibition of LRV1. Treatment resulted in loss of LRV1 with first-order kinetics, as expected for random virus segregation, and elimination within six cell doublings, consistent with a measured LRV1 copy number of about 15. Viral loss was specific to antiviral nucleoside treatment and not induced by growth inhibitors, in contrast to fungal dsRNA viruses. Comparisons of drug-treated LRV1 <sup>+</sup> and LRV1 <sup>-</sup> lines recapitulated LRV1-dependent pathology and parasite replication in mouse infections, and cytokine secretion in macrophage infections. Agents targeting Totiviridae have not been described previously, nor are there many examples of inhibitors acting against dsRNA viruses more generally. The compounds identified here provide a key proof-of-principle in support of further studies identifying efficacious antivirals for use in in vivo studies of LRV1-mediated virulence

    SARS-CoV-2 infection is effectively treated and prevented by EIDD-2801

    Get PDF
    All known recently emerged human coronaviruses probably originated in bats1. Here we used a single experimental platform based on human lung-only mice (LoM) to demonstrate efficient in vivo replication of all recently emerged human coronaviruses (SARS-CoV, MERS-CoV and SARS-CoV-2) and two highly relevant endogenous pre-pandemic SARS-like bat coronaviruses. Virus replication in this model occurs in bona fide human lung tissue and does not require any type of adaptation of the virus or the host. Our results indicate that bats harbour endogenous coronaviruses capable of direct transmission into humans. Further detailed analysis of pandemic SARS-CoV-2 in vivo infection of LoM human lung tissue showed predominant infection of human lung epithelial cells, including type II pneumocytes present in alveoli and ciliated airway cells. Acute SARS-CoV-2 infection was highly cytopathic and induced a robust and sustained type I interferon and inflammatory cytokine/chemokine response. Finally, we evaluated a therapeutic and pre-exposure prophylaxis strategy for coronavirus infection. Our results show that therapeutic and prophylactic administration of EIDD-2801, an oral broad spectrum antiviral currently in phase II–III clinical trials, dramatically inhibited SARS-CoV-2 replication in vivo and thus has significant potential for the prevention and treatment of COVID-19
    corecore