25 research outputs found

    Balance task and head orientation dependency of vestibular reflexes in neck muscles

    Get PDF
    Human upright posture of both the head and body is facilitated by the CNS’s ability to integrate multiple sensory feedback signals, as well as its discernibility of the motor commands that maintain this stabilization. The vestibular organ in particular detects motion of the head-in-space, which is transformed according to on-going head and body orientation into appropriate motor responses. However, when motor commands do not contribute to the control of standing posture, and are incongruent with their expected sensory consequences, vestibulomuscular responses in the lower limb undergo unconscious suppression. In this study, we investigated whether vestibular response suppression occurs in neck muscles under conditions where the muscles are active but not engaged in a task to balance the head. In addition, we examined the effects of head orientation to identify spatial transformation of vestibular reflex responses. Eight subjects were exposed to stochastic vestibular stimulation (0-75 Hz) in a seated condition while their head was either free or fixed, and rotated at either 0 or 60°. In head-free conditions, subjects were asked to rotate their head 60° to the left in order to activate agonist neck muscle pairs (sternocleidomastoid - SCM and splenius capitis - SPL). In head-fixed conditions, subjects performed isometric neck muscle contractions in yaw at orientations of 0° and 60°, as well as flexion, extension and co-contraction at an orientation of 0°. Intramuscular EMG was collected bilaterally in SCM and SPL muscles. Muscle responses correlated to the input stimuli were significant (P < 0.05) for all conditions provided the muscle was used in contraction. Neither muscle underwent the expected vestibulomuscular suppression when not engaged in the balance task (i.e. head-fixed). Nevertheless, the magnitude of the SPL responses decreased by 22% when the head was fixed whereas SCM responses were unaffected. The effect of head fixation only in SPL suggests differences in neural pathways across muscles, possibly via alternative pathways known to exist in the SPL from the well-established monosynaptic vestibulospinal inputs in SCM and SPL. For both muscles, the effect of orientation and force direction had no effect on muscles responses. Since the stimulation is fixed relative to the head, the same muscles are activated to respond to the input stimulus at both orientations and all force directions. These results indicate that the vestibular pathways connecting neck muscles are less susceptible to suppression than lower limb muscles, most likely because the monosynaptic inputs innervating them are subject to less central control

    Vestibular contributions to lateral stabilization are bilaterally dependent during split belt walking

    Get PDF
    Vestibular information is critical for maintaining balance during locomotion, and is known to be attenuated with increasing locomotor velocity and cadence. This attenuation is muscle and phase dependent, and is thought to reflect the functional contribution of each muscle to balance control during each stride of the gait cycle. Bilaterally, the vestibular coupling is mirrored relative to the gait cycle as each leg undergoes similar modulation with variation in phase, velocity and cadence. Here, we asked whether the modulation of the vestibular contribution to each limb is bilaterally dependent. By using a split-belt treadmill with asymmetric belt speeds, we can control the locomotion properties of each leg and compare the vestibular modulation to symmetric conditions. We hypothesized that bilaterally symmetric vestibular modulation would indicate leg independent vestibular influence while bilaterally asymmetric vestibular modulation would indicate leg dependent vestibular influence. Subjects were exposed to binaural bipolar stochastic vestibular stimulation (0-25 Hz) during symmetric and asymmetric walking conditions. Symmetric trials were performed at belt speeds of 0.4 and 0.8 m/s and for 10 min. The asymmetric trial was performed at belt speeds of 0.4 and 0.8 m/s for 16 min. Subjects walked with a cadence of 78 steps/min which was easily maintained in both limbs. EMG of the bilateral medial gastrocnemii and three-dimensional ground reaction force and torques were collected. Only the last 340 strides (~ 9 min of data) were used in the analysis to avoid the adaptation that typically occurs within the first 250 strides (~ 6 min) of asymmetric walking. Significant muscle activity and lateral ground reaction forces (P < 0.01) were correlated to the input stimuli in all trials. Stimulus-EMG and -lateral ground reaction force correlations decreased at higher belt speeds during symmetric walking, as previously reported. During the split belt condition, the magnitude of correlations stimulus-EMG and -force were bilaterally asymmetric and different from their symmetric counterparts. During the asymmetric condition correlations decreased for the slow leg, but more closely resembled the responses observed during slow symmetric walking, and increased for the fast leg, but more closely resembled the responses observed during fast symmetric walking. These results indicate that the modulation of vestibular reflexes is dependent upon the specific kinematics of each leg but bilaterally linked to respond to the properties of the locomotion pattern

    SSR-Based Analysis of Genetic Diversity and Structure of Sweet Cherry (Prunus avium L.) from 19 Countries in Europe

    Get PDF
    Sweet cherry (Prunus avium L.) is a temperate fruit species whose production might be highly impacted by climate change in the near future. Diversity of plant material could be an option to mitigate these climate risks by enabling producers to have new cultivars well adapted to new environmental conditions. In this study, subsets of sweet cherry collections of 19 European countries were genotyped using 14 SSR. The objectives of this study were (i) to assess genetic diversity parameters, (ii) to estimate the levels of population structure, and (iii) to identify germplasm redundancies. A total of 314 accessions, including landraces, early selections, and modern cultivars, were monitored, and 220 unique SSR genotypes were identified. All 14 loci were confirmed to be polymorphic, and a total of 137 alleles were detected with a mean of 9.8 alleles per locus. The average number of alleles (N = 9.8), PIC value (0.658), observed heterozygosity (Ho = 0.71), and expected heterozygosity (He = 0.70) were higher in this study compared to values reported so far. Four ancestral populations were detected using STRUCTURE software and confirmed by Principal Coordinate Analysis (PCoA), and two of them (K1 and K4) could be attributed to the geographical origin of the accessions. A N-J tree grouped the 220 sweet cherry accessions within three main clusters and six subgroups. Accessions belonging to the four STRUCTURE populations roughly clustered together. Clustering confirmed known genealogical data for several accessions. The large genetic diversity of the collection was demonstrated, in particular within the landrace pool, justifying the efforts made over decades for their conservation. New sources of diversity will allow producers to face challenges, such as climate change and the need to develop more sustainable production systems

    Task, muscle and frequency dependent vestibular control of posture

    Get PDF
    The vestibular system is crucial for postural control; however there are considerable differences in the task dependence and frequency response of vestibular reflexes in appendicular and axial muscles. For example, vestibular reflexes are only evoked in appendicular muscles when vestibular information is relevant to postural control, while in neck muscles they are maintained regardless of the requirement to maintain head on trunk balance. Recent investigations have also shown that the bandwidth of vestibular input on neck muscles is much broader than appendicular muscles (up to a factor of 3). This result challenges the notion that vestibular reflexes only contribute to postural control across the behavioral and physiological frequency range of the vestibular organ (i.e., 0–20 Hz). In this review, we explore and integrate these task-, muscle- and frequency-related differences in the vestibular system’s contribution to posture, and propose that the human nervous system has adapted vestibular signals to match the mechanical properties of the system that each group of muscles controlsBiomechanical EngineeringMechanical, Maritime and Materials Engineerin

    Frequency response of vestibular reflexes in neck, back, and lower limb muscles

    Get PDF
    Vestibular pathways form short-latency disynaptic connections with neck motoneurons, whereas they form longer-latency disynaptic and polysynaptic connections with lower limb motoneurons. We quantified frequency responses of vestibular reflexes in neck, back, and lower limb muscles to explain between-muscle differences. Two hypotheses were evaluated: 1) that muscle-specific motor-unit properties influence the bandwidth of vestibular reflexes; and 2) that frequency responses of vestibular reflexes differ between neck, back, and lower limb muscles because of neural filtering. Subjects were exposed to electrical vestibular stimuli over bandwidths of 0–25 and 0–75 Hz while recording activity in sternocleidomastoid, splenius capitis, erector spinae, soleus, and medial gastrocnemius muscles. Coherence between stimulus and muscle activity revealed markedly larger vestibular reflex bandwidths in neck muscles (0–70 Hz) than back (0–15 Hz) or lower limb muscles (0–20 Hz). In addition, vestibular reflexes in back and lower limb muscles undergo low-pass filtering compared with neck-muscle responses, which span a broader dynamic range. These results suggest that the wider bandwidth of head-neck biomechanics requires a vestibular influence on neck-muscle activation across a larger dynamic range than lower limb muscles. A computational model of vestibular afferents and a motoneuron pool indicates that motor-unit properties are not primary contributors to the bandwidth filtering of vestibular reflexes in different muscles. Instead, our experimental findings suggest that pathway-dependent neural filtering, not captured in our model, contributes to these muscle-specific responses. Furthermore, gain-phase discontinuities in the neck-muscle vestibular reflexes provide evidence of destructive interaction between different reflex components, likely via indirect vestibular-motor pathway

    Rapid limb-specific modulation of vestibular contributions to ankle muscle activity during locomotion

    Get PDF
    During walking, the vestibular influence on locomotor activity is phase-dependent and modulated in both limbs with changes in velocity. It is unclear, however, whether this bilateral modulation is due to a coordinated mechanism between both limbs or instead through limb-specific processes that remain masked by the symmetric nature of locomotion. Here, human subjects walked on a split-belt treadmill with one belt moving at 0.4 m s−1 and the other moving at 0.8 m s−1 while exposed to an electrical vestibular stimulus. Muscle activity was recorded bilaterally around the ankles of each limb and used to compare vestibulo-muscular coupling between velocity-matched and unmatched tied-belt walking. In general, response magnitudes decreased by ∌20–50% and occurred ∌13–20% earlier in the stride cycle at the higher belt velocity. This velocity-dependent modulation of vestibular-evoked muscle activity was retained during split-belt walking and was similar within each limb to velocity-matched tied-belt walking. These results demonstrate that the vestibular influence on ankle muscles during locomotion can be adapted independently to each limb. Furthermore, modulation of vestibular-evoked muscle responses occurred rapidly (∌13–34 strides) after onset of split-belt walking. This rapid adaptation contrasted the prolonged adaptation in step length symmetry (∌128 strides) as well as EMG magnitude and timing (∌40–100 and ∌20–80 strides, respectively). These results suggest that vestibular influence on ankle muscle control is adjusted rapidly in sensorimotor control loops as opposed to longer-term error correction mechanisms commonly associated split-belt adaptation. Rapid limb-specific sensorimotor feedback adaptation may be advantageous for asymmetric overground locomotion, such as navigating irregular terrain or turning.Biomechatronics & Human-Machine Contro
    corecore