456 research outputs found
Efficient non-linear 3D electrical tomography reconstruction
Non-linear electrical tomography imaging can be performed efficiently if certain optimisations are applied to the computational reconstruction process. We present a 3D non-linear reconstruction algorithm based on a regularized conjugate gradient solver and discuss the optimisations which we incorporated to allow for an efficient and accurate reconstruction. In particular, the application of image smoothness constraints or other regularization techniques and auto-adaptive mesh refinement are highly relevant. We demonstrate the results of applying this algorithm to the reconstruction of a simulated material distribution in a cubic volume
Optimal finite element modelling and efficient reconstruction in non-linear 3D electrical resistance tomography
Electrical Impedance Tomography can provide images with well-defined characteristics using a fully non-linear reconstruction process when appropriate constraints are imposed on the solution to allow the ill-posed inverse problem to be solved. Using appropriate finite element discretizations for forward solution and inverse problem offers additional advantages in the image reconstruction process, such as (a) inclusion of prior knowledge, (b) generic model templating to adapt to, for example, individual head shapes, and (c) obtaining accurate results without unnecessary computational overhead. We have developed an efficient 3D non-linear reconstruction algorithm based on a regularized inverse conjugate gradient solver which incorporates (a) local image smoothness constraints, and (b) a number of optimisations which reduce the computing power required to obtain an accurate solution. We show results from applying this to various problems which arise in medical resistivity reconstruction given only surface potential measurements and demonstrate the importance of the FE discretization. Keywords: 3D non-linear electrical impedance tomography, FE template modelling, optimal finite element meshes, 3D visualization, FE discretization
High fidelity imaging and high performance computing in nonlinear EIT
We show that nonlinear EIT provides images with well defined characteristics when smoothness of the image is used as a constraint in the reconstruction process. We use the gradient of the logarithm of resistivity as an effective measure of image smoothness, which has the advantage that resistivity and conductivity are treated with equal weight. We suggest that a measure of the fidelity of the image to the object requires the explicit definition and application of such a constraint. The algorithm is applied to the simulation of intra-ventricular haemorrhaging (IVH) in a simple head model. The results indicate that a 5% increase in the blood content of the ventricles would be easily detectable with the noise performance of contemporary instrumentation. The possible implementation of the algorithm in real time via high performance computing is discussed
Efficient non-linear 3D electrical tomography and finite element optimizations for functional source imaging
An essential factor in functional source imaging is the accurate knowledge of the conducitvity dostribution inside the body. Current models for electrophysiological forward and inverse problems use tabulated conductivity values obtained from experiments. This article shows how EIT-derived conductivities can be used in EEG reconstructions of a head slice
Studying Individual Differences in Language Comprehension: The Challenges of Item-Level Variability and Well-Matched Control Conditions
Translating experimental tasks that were designed to investigate differences between conditions at the group-level into valid and reliable instruments to measure individual differences in cognitive skills is challenging (Hedge et al., 2018; Rouder et al., 2019; Rouder & Haaf, 2019). For psycholinguists, the additional complexities associated with selecting or constructing language stimuli, and the need for appropriate well-matched baseline conditions make this endeavour particularly complex. In a typical experiment, a process-of-interest (e.g. ambiguity resolution) is targeted by contrasting performance in an experimental condition with performance in a well-matched control condition. In many cases, careful between-condition matching precludes the same participant from encountering all stimulus items. Unfortunately, solutions that work for group-level research (e.g. constructing counterbalanced experiment versions) are inappropriate for individual-differences designs. As a case study, we report an ambiguity resolution experiment that illustrates the steps that researchers can take to address this issue and assess whether their measurement instrument is both valid and reliable. On the basis of our findings, we caution against the widespread approach of using datasets from group-level studies to also answer important questions about individual differences
Presentation format affects the behavioural and neural processing costs of sentence reinterpretation
Studying individual differences in language comprehension : The challenges of item-level variability and well- matched control conditions
Translating experimental tasks that were designed to investigate differences between conditions at the group-level into valid and reliable instruments to measure individual differences in cognitive skills is challenging (Hedge et al., 2018; Rouder et al., 2019; Rouder & Haaf, 2019). For psycholinguists, the additional complexities associated with selecting or constructing language stimuli, and the need for appropriate well-matched baseline conditions make this endeavour particularly complex. In a typical experiment, a process-of-interest (e.g. ambiguity resolution) is targeted by contrasting performance in an experimental condition with performance in a well-matched control condition. In many cases, careful between-condition matching precludes the same participant from encountering all stimulus items. Unfortunately, solutions that work for group-level research (e.g. constructing counterbalanced experiment versions) are inappropriate for individual-differences designs. As a case study, we report an ambiguity resolution experiment that illustrates the steps that researchers can take to address this issue and assess whether their measurement instrument is both valid and reliable. On the basis of our findings, we caution against the widespread approach of using datasets from group-level studies to also answer important questions about individual differences
Sorting of Fas ligand to secretory lysosomes is regulated by mono-ubiquitylation and phosphorylation
Fas ligand (FasL), a potent mediator of apoptosis expressed by CTL and NK cells, is sorted into the inner vesicles of secretory lysosomes for release via exosome-like vesicles. Previous studies identified a proline-rich domain in the cytoplasmic tail required for sorting FasL to secretory lysosomes, but the mechanisms by which this occurs have not been identified. Here we demonstrate that the PRD of FasL binds Fgr, Fyn and Lyn tyrosine kinases, leading to phosphorylation of FasL. Loss of phosphorylation reduces internalisation of FasL into multivesicular bodies. FasL is also directly mono-ubiquitylated at lysines flanking the PRD and mutation of these lysines reduces MVB localisation of FasL. Phosphorylation is not required for ubiquitylation because FasL lacking all tyrosines undergoes mono-ubiquitylation. These studies show that phosphorylation and ubiquitin signals regulate the sorting of FasL to secretory lysosomes by controlling entry into multivesicular bodies
Size-associated Variation and Factors Affecting the Morphology of Brown Bodies in Glycera tridactyla (Polychaeta:Glyceridae)
Size-associated variations in brown body morphology (size and shape) were studied from the individuals of Glycera tridactyla. Variables related to size, length (BL) and width (BW) of the brown bodies were measured. On the basis of these measurements, other variables such as the surface area (SA), volume (V), surface area/volume ratio (SA/V) and elongation degree (ED) were calculated. Brown body shape was quantified by the elongation degree. The immature brown bodies were significantly smaller than the mature bodies, and therefore the smaller bodies had a higher SA/V. Results obtained from the regression analysis showed that there was a significant relationship between all the variables with the exception of SA/V:BW for the immature bodies and ED: BL for both groups of the bodies. The body size (proboscis length) of the worm and the sampling time (months) were the affecting factors on size and shape of the brown body. Brown bodies tend to be elongated as the proboscis length increased. The variation in size and/or shape of the brown bodies could refer to an adaptation to the movement along the coelomic fluid
- …