24,204 research outputs found

    Towards precision distances and 3D dust maps using broadband Period--Magnitude relations of RR Lyrae stars

    Full text link
    We determine the period-magnitude relations of RR Lyrae stars in 13 photometric bandpasses from 0.4 to 12 {\mu}m using timeseries observations of 134 stars. The Bayesian formalism, extended from our previous work to include the effects of line-of-sight dust extinction, allows for the simultaneous inference of the posterior distribution of the mean absolute magnitude, slope of the period-magnitude power-law, and intrinsic scatter about a perfect power-law for each bandpass. In addition, the distance modulus and line-of-sight dust extinction to each RR Lyrae star in the calibration sample is determined, yielding a sample median fractional distance error of 0.66%. The intrinsic scatter in all bands appears to be larger than the photometric errors, except in WISE W1 (3.4 {\mu}m) and W2 (4.6 {\mu}m) where the photometric error (σ≈0.05\sigma \approx 0.05 mag) is to be comparable or larger than the intrinsic scatter. Additional observations at these wavelengths could improve the inferred distances to these sources further. As an application of the methodology, we infer the distance to the RRc-type star RZCep at low Galactic latitude (b=5.5∘b = 5.5^\circ) to be μ=8.0397±0.0123\mu=8.0397\pm0.0123 mag (405.4±2.3405.4\pm2.3 pc) with colour excess E(B−V)=0.2461±0.0089E(B-V)=0.2461\pm0.0089 mag. This distance, equivalent to a parallax of 2467±142467\pm14 microarcsec, is consistent with the published HST parallax measurement but with an uncertainty that is 13 times smaller than the HST measurement. If our measurements (and methodology) hold up to scrutiny, the distances to these stars have been determined to an accuracy comparable to those expected with Gaia. As RR Lyrae are one of the primary components of the cosmic distance ladder, the achievement of sub-1% distance errors within a formalism that accounts for dust extinction may be considered a strong buttressing of the path to eventual 1% uncertainties in Hubble's constant.Comment: 21 pages, 29 figures, 2 tables, abstract abridged for arXiv. Comments solicited on referee report (received June 9, 2014) linked: https://gist.github.com/profjsb/c6c4e2f3a20ea02f1762 . Public archive of code used to generate results and figures: https://github.com/ckleinastro/period_luminosity_relation_fittin

    Expected characteristics of the subclass of Supernova Gamma-ray Bursts (S-GRBs)

    Get PDF
    The spatial and temporal coincidence between the gamma-ray burst (GRB) 980425 and supernova (SN) 1998bw has prompted speculation that there exists a class of GRBs produced by SNe (``S-GRBs''). Robust arguments for the existence of a relativistic shock have been presented on the basis of radio observations. A physical model based on the radio observations lead us to propose the following characteristics of supernovae GRBs (S-GRBs): 1) prompt radio emission and implied brightness temperature near or below the inverse Compton limit, 2) high expansion velocity of the optical photosphere as derived from lines widths and energy release larger than usual, 3) no long-lived X-ray afterglow, and 4) a single pulse (SP) GRB profile. Radio studies of previous SNe show that only type Ib and Ic potentially satisfy the first condition. Accordingly we have investigated proposed associations of GRBs and SNe finding no convincing evidence (mainly to paucity of data) to confirm any single connection of a SN with a GRB. If there is a more constraining physical basis for the burst time-history of S-GRBs beyond that of the SP requirement, we suggest the 1% of light curves in the BATSE catalogue similar to that of GRB 980425 may constitute the subclass. Future optical follow-up of bursts with similar profiles should confirm if such GRBs originate from some fraction of SN type Ib/Ic.Comment: 11 pages of LaTeX with 1 figure. Submitted to the Astrophysical Journal Letter

    Probing the distance and morphology of the Large Magellanic Cloud with RR Lyrae stars

    Full text link
    We present a Bayesian analysis of the distances to 15,040 Large Magellanic Cloud (LMC) RR Lyrae stars using VV- and II-band light curves from the Optical Gravitational Lensing Experiment, in combination with new zz-band observations from the Dark Energy Camera. Our median individual RR Lyrae distance statistical error is 1.89 kpc (fractional distance error of 3.76 per cent). We present three-dimensional contour plots of the number density of LMC RR Lyrae stars and measure a distance to the core LMC RR Lyrae centre of 50.2482±0.0546(statistical)±0.4628(systematic)kpc{50.2482\pm0.0546 {\rm(statistical)} \pm0.4628 {\rm(systematic)} {\rm kpc}}, equivalently μLMC=18.5056±0.0024(statistical)±0.02(systematic){\mu_{\rm LMC}=18.5056\pm0.0024 {\rm(statistical)} \pm0.02 {\rm(systematic)}}. This finding is statistically consistent with and four times more precise than the canonical value determined by a recent meta-analysis of 233 separate LMC distance determinations. We also measure a maximum tilt angle of 11.84∘±0.80∘11.84^{\circ}\pm0.80^{\circ} at a position angle of 62∘62^\circ, and report highly precise constraints on the VV, II, and zz RR Lyrae period--magnitude relations. The full dataset of observed mean-flux magnitudes, derived colour excess E(V−I){E(V-I)} values, and fitted distances for the 15,040 RR Lyrae stars produced through this work is made available through the publication's associated online data.Comment: 7 pages, 8 figure

    GRB Energetics and the GRB Hubble Diagram: Promises and Limitations

    Full text link
    We present a complete sample of 29 GRBs for which it has been possible to determine temporal breaks (or limits) from their afterglow light curves. We interpret these breaks within the framework of the uniform conical jet model, incorporating realistic estimates of the ambient density and propagating error estimates on the measured quantities. In agreement with our previous analysis of a smaller sample, the derived jet opening angles of those 16 bursts with redshifts result in a narrow clustering of geometrically-corrected gamma-ray energies about E_gamma = 1.33e51 erg; the burst-to-burst variance about this value is a factor of 2.2. Despite this rather small scatter, we demonstrate in a series of GRB Hubble diagrams, that the current sample cannot place meaningful constraints upon the fundamental parameters of the Universe. Indeed for GRBs to ever be useful in cosmographic measurements we argue the necessity of two directions. First, GRB Hubble diagrams should be based upon fundamental physical quantities such as energy, rather than empirically-derived and physically ill-understood distance indicators. Second, a more homogeneous set should be constructed by culling sub-classes from the larger sample. These sub-classes, though now first recognizable by deviant energies, ultimately must be identifiable by properties other than those directly related to energy. We identify a new sub-class of GRBs (``f-GRBs'') which appear both underluminous by factors of at least 10 and exhibit a rapid fading at early times. About 10-20% of observed long-duration bursts appear to be f-GRBs.Comment: Accepted to the Astrophysical Journal (20 May 2003). 19 pages, 3 Postscript figure

    The Rapidly Fading Afterglow from the Gamma-Ray Burst of 1999 May 6

    Get PDF
    We report on the discovery of the radio afterglow from the gamma-ray burst (GRB) of 1999 May 6 (GRB 990506) using the Very Large Array (VLA). The radio afterglow was detected at early times (1.5 days), but began to fade rapidly sometime between 1 and 5 days after the burst. If we attribute the radio emission to the forward shock from an expanding fireball, then this rapid onset of the decay in the radio predicts that the corresponding optical transient began to decay between 1 and 5 minutes after the burst. This could explain why no optical transient for GRB 990506 was detected in spite of numerous searches. The cause of the unusually rapid onset of the decay for the afterglow is probably the result of an isotropically energetic fireball expanding into a low density circumburst environment. At the location of the radio afterglow we find a faint (R ~ 24 mag) host galaxy with a double morphology.Comment: in press at ApJ Letters, 13 page LaTeX document includes 2 postscript figure
    • …
    corecore