18,431 research outputs found

    Do long-duration GRBs follow star formation?

    Get PDF
    We compare the luminosity function and rate inferred from the BATSE long bursts peak flux distribution with those inferred from the Swift peak flux distribution. We find that both the BATSE and the Swift peak fluxes can be fitted by the same luminosity function and the two samples are compatible with a population that follows the star formation rate. The estimated local long GRB rate (without beaming corrections) varies by a factor of five from 0.05 Gpc^(-3)yr^(-1) for a rate function that has a large fraction of high redshift bursts to 0.27 Gpc^(-3)yr^(-1) for a rate function that has many local ones. We then turn to compare the BeppoSax/HETE2 and the Swift observed redshift distributions and compare them with the predictions of the luminosity function found. We find that the discrepancy between the BeppoSax/HETE2 and Swift observed redshift distributions is only partially explained by the different thresholds of the detectors and it may indicate strong selection effects. After trying different forms of the star formation rate (SFR) we find that the observed Swift redshift distribution, with more observed high redshift bursts than expected, is inconsistent with a GRB rate that simply follows current models for the SFR. We show that this can be explained by GRB evolution beyond the SFR (more high redshift bursts). Alternatively this can also arise if the luminosity function evolves and earlier bursts were more luminous or if strong selection effects affect the redshift determination.Comment: 15 pages, 8 figures, accepted for publication in JCA

    Expected characteristics of the subclass of Supernova Gamma-ray Bursts (S-GRBs)

    Get PDF
    The spatial and temporal coincidence between the gamma-ray burst (GRB) 980425 and supernova (SN) 1998bw has prompted speculation that there exists a class of GRBs produced by SNe (``S-GRBs''). Robust arguments for the existence of a relativistic shock have been presented on the basis of radio observations. A physical model based on the radio observations lead us to propose the following characteristics of supernovae GRBs (S-GRBs): 1) prompt radio emission and implied brightness temperature near or below the inverse Compton limit, 2) high expansion velocity of the optical photosphere as derived from lines widths and energy release larger than usual, 3) no long-lived X-ray afterglow, and 4) a single pulse (SP) GRB profile. Radio studies of previous SNe show that only type Ib and Ic potentially satisfy the first condition. Accordingly we have investigated proposed associations of GRBs and SNe finding no convincing evidence (mainly to paucity of data) to confirm any single connection of a SN with a GRB. If there is a more constraining physical basis for the burst time-history of S-GRBs beyond that of the SP requirement, we suggest the 1% of light curves in the BATSE catalogue similar to that of GRB 980425 may constitute the subclass. Future optical follow-up of bursts with similar profiles should confirm if such GRBs originate from some fraction of SN type Ib/Ic.Comment: 11 pages of LaTeX with 1 figure. Submitted to the Astrophysical Journal Letter

    Hints of the existence of Axion-Like-Particles from the gamma-ray spectra of cosmological sources

    Get PDF
    Axion Like Particles (ALPs) are predicted to couple with photons in the presence of magnetic fields. This effect may lead to a significant change in the observed spectra of gamma-ray sources such as AGNs. Here we carry out a detailed study that for the first time simultaneously considers in the same framework both the photon/axion mixing that takes place in the gamma-ray source and that one expected to occur in the intergalactic magnetic fields. An efficient photon/axion mixing in the source always means an attenuation in the photon flux, whereas the mixing in the intergalactic medium may result in a decrement and/or enhancement of the photon flux, depending on the distance of the source and the energy considered. Interestingly, we find that decreasing the value of the intergalactic magnetic field strength, which decreases the probability for photon/axion mixing, could result in an increase of the expected photon flux at Earth if the source is far enough. We also find a 30% attenuation in the intensity spectrum of distant sources, which occurs at an energy that only depends on the properties of the ALPs and the intensity of the intergalactic magnetic field, and thus independent of the AGN source being observed. Moreover, we show that this mechanism can easily explain recent puzzles in the spectra of distant gamma-ray sources... [ABRIDGED] The consequences that come from this work are testable with the current generation of gamma-ray instruments, namely Fermi (formerly known as GLAST) and imaging atmospheric Cherenkov telescopes like CANGAROO, HESS, MAGIC and VERITAS.Comment: 16 pages, 7 figures. Replaced to match the published version in Phys. Rev. D. Minor changes with respect to v

    Dust and dark Gamma-Ray Bursts: mutual implications

    Full text link
    In a cosmological context dust has been always poorly understood. That is true also for the statistic of GRBs so that we started a program to understand its role both in relation to GRBs and in function of z. This paper presents a composite model in this direction. The model considers a rather generic distribution of dust in a spiral galaxy and considers the effect of changing some of the parameters characterizing the dust grains, size in particular. We first simulated 500 GRBs distributed as the host galaxy mass distribution, using as model the Milky Way. If we consider dust with the same properties as that we observe in the Milky Way, we find that due to absorption we miss about 10% of the afterglows assuming we observe the event within about 1 hour or even within 100s. In our second set of simulations we placed GRBs randomly inside giants molecular clouds, considering different kinds of dust inside and outside the host cloud and the effect of dust sublimation caused by the GRB inside the clouds. In this case absorption is mainly due to the host cloud and the physical properties of dust play a strong role. Computations from this model agree with the hypothesis of host galaxies with extinction curve similar to that of the Small Magellanic Cloud, whereas the host cloud could be also characterized by dust with larger grains. To confirm our findings we need a set of homogeneous infrared observations. The use of coming dedicated infrared telescopes, like REM, will provide a wealth of cases of new afterglow observations.Comment: 16 pages, 8 figures, accepted by A&

    Intrinsic spectra and energetics of BeppoSAX Gamma-Ray Bursts with known redshifts

    Full text link
    We present the main results of a study of spectral and energetics properties of twelve gamma-ray bursts (GRBs) with redshift estimates. All GRBs in our sample were detected by BeppoSAX in a broad energy range (2-700 keV). From the redshift estimates and the good-quality BeppoSAX time-integrated spectra we deduce the main properties of GRBs in their cosmological rest frames. All spectra in our sample are satisfactorily represented by the Band model with no significant soft X-ray excesses or spectral absorptions. We find a positive correlation between the estimated total (isotropic) energies in the 1-10000 keV energy range (E_rad) and redshifts z. Interestingly, more luminous GRBs are characterized also by larger peak energies E_p of their EF(E) spectra. Furthermore, more distant GRBs appear to be systematically harder in the X-ray band compared to GRBs with lower redshifts. We discuss how selection and data truncation effects could bias our results and give possible explanations for the correlations that we found.Comment: 10 pages, 5 figures, accepted for publication in Astronomy & Astrophysic

    Comment on "Nucleon elastic form factors and local duality"

    Get PDF
    We comment on the papers "Nucleon elastic form factors and local duality" [Phys. Rev. {\bf D62}, 073008 (2000)] and "Experimental verification of quark-hadron duality" [Phys. Rev. Lett. {\bf 85}, 1186 (2000)]. Our main comment is that the reconstruction of the proton magnetic form factor, claimed to be obtained from the inelastic scaling curve thanks to parton-hadron local duality, is affected by an artifact.Comment: to appear in Phys. Rev.

    Flexible Lipid Bilayers in Implicit Solvent

    Full text link
    A minimalist simulation model for lipid bilayers is presented. Each lipid is represented by a flexible chain of beads in implicit solvent. The hydrophobic effect is mimicked through an intermolecular pair potential localized at the ``water''/hydrocarbon tail interface. This potential guarantees realistic interfacial tensions for lipids in a bilayer geometry. Lipids self assemble into bilayer structures that display fluidity and elastic properties consistent with experimental model membrane systems. Varying molecular flexibility allows for tuning of elastic moduli and area/molecule over a range of values seen in experimental systems.Comment: 5 pages, 5 figure
    • …
    corecore