16 research outputs found
Withdrawal-associated injury site pain (WISP): a descriptive case series of an opioid cessation phenomenon.
Withdrawal pain can be a barrier to opioid cessation. Yet, little is known about old injury site pain in this context. We conducted an exploratory mixed-methods descriptive case series using a web-based survey and in-person interviews with adults recruited from pain and addiction treatment and research settings. We included individuals who self-reported a past significant injury that was healed and pain-free before the initiation of opioids, which then became temporarily painful upon opioid cessation-a phenomenon we have named withdrawal-associated injury site pain (WISP). Screening identified WISP in 47 people, of whom 34 (72%) completed the descriptive survey, including 21 who completed qualitative interviews. Recalled pain severity scores for WISP were typically high (median: 8/10; interquartile range [IQR]: 2), emotionally and physically aversive, and took approximately 2 weeks to resolve (median: 14; IQR: 24 days). Withdrawal-associated injury site pain intensity was typically slightly less than participants' original injury pain (median: 10/10; IQR: 3), and more painful than other generalized withdrawal symptoms which also lasted approximately 2 weeks (median: 13; IQR: 25 days). Fifteen surveyed participants (44%) reported returning to opioid use because of WISP in the past. Participants developed theories about the etiology of WISP, including that the pain is the brain's way of communicating a desire for opioids. This research represents the first known documentation that previously healed, and pain-free injury sites can temporarily become painful again during opioid withdrawal, an experience which may be a barrier to opioid cessation, and a contributor to opioid reinitiation
The Clinical and Genotypic Spectrum of Scoliosis in Multiple Pterygium Syndrome: A Case Series on 12 Children
Background: Multiple pterygium syndrome (MPS) is a genetically heterogeneous rare form of arthrogryposis multiplex congenita characterized by joint contractures and webbing or pterygia, as well as distinctive facial features related to diminished fetal movement. It is divided into prenatally lethal (LMPS, MIM253290) and nonlethal (Escobar variant MPS, MIM 265000) types. Developmental spine deformities are common, may present early and progress rapidly, requiring regular fo llow-up and orthopedic management. Methods: Retrospective chart review and prospective data collection were conducted at three hospital centers. Molecular diagnosis was confirmed with whole exome or whole genome sequencing. Results: This case series describes the clinical features and scoliosis treatment on 12 patients from 11 unrelated families. A molecular diagnosis was confirmed in seven; two with MYH3 variants and five with CHRNG. Scoliosis was present in all but our youngest patient. The remaining 11 patients spanned the spectrum between mild (curve ≤ 25°) and malignant scoliosis (≥50° curve before 4 years of age); the two patients with MYH3 mutations presented with malignant scoliosis. Bracing and serial spine casting appear to be beneficial for a few years; non-fusion spinal instrumentation may be needed to modulate more severe curves during growth and spontaneous spine fusions may occur in those cases. Conclusions: Molecular diagnosis and careful monitoring of the spine is needed in children with MPS
The effects of exercise at different temperatures on cognitive function: A systematic review
To date, no review has focused specifically on the potential modulating role of environmental temperature on the effects of exercise on cognitive function. Despite this, a range of occupations and performance contexts exist (e.g., military personnel, emergency services, sport) where the maintenance of cognitive function in environmentally challenging environments is crucial. Therefore, this systematic review aimed to evaluate the experimental research investigating how manipulating environmental temperature influenced the effects of acute bouts exercise on cognitive functioning from pre-to-post exercise, or during exercise. Studies to be included were assessed by two authors reviewing title, abstract, and then full-text. From the searches conducted, twenty articles were identified which met the inclusion criteria. For the purpose of this review, exercise involved in each study was categorised into low, moderate, and vigorous dosages (dependent on intensity and duration). The results indicate that moderate dosages of exercise help stimulate improved cognitive performance from pre-to-post exercise in temperate conditions, where cold exposure appears to blunt these effects. In addition, hot environments led to cognitive decrements during and post exercise which were often identified in studies that implemented prolonged moderate or vigorous exercise protocols. Therefore, suggesting a combination of heightened physiological strain from increased dose of exercise, alongside heat exposure, can be detrimental to optimal cognitive functioning, whereby executive functioning tasks appeared to be most affected. The findings from this systematic review highlight the potential modulating role of environmental temperature on the effects of exercise on cognitive function. Thus, highlighting the importance of considering the role of environmental temperature for individuals either exercising to elicit desired cognitive benefits or for those involved in physically demanding occupations or performance domains