11 research outputs found

    Effects of Exercise Domain and Intensity on Sleep in Women and Men with Overweight and Obesity

    Get PDF
    Inadequate sleep is associated with cardiometabolic risk and adiposity. Exercise has been suggested as an efficient strategy to improve sleep; however, the effects of different types of exercise on sleep in individuals with overweight and obesity are not well understood. We examined effects of active commuting and leisure-time exercise on sleep in individuals with overweight or obesity. 130 physically inactive adults (20–45 years) with overweight or class 1 obesity (body mass index: 25–35 kg/m2) were randomized to 6 months of habitual lifestyle (CON, n = 18), active commuting by bike (BIKE, n = 35), or leisure-time exercise of moderate intensity (MOD, 50% VO2peak-reserve, n = 39) or vigorous intensity (VIG, 70% VO2peak-reserve, n = 38), 5 days/week. Sleep was assessed from 7-day/night accelerometry and questionnaires at baseline, 3 months, and 6 months. 92 participants were included in a per protocol analysis. At 3 months, sleep duration was longer in VIG (29 min/night [3; 55] (mean [95% CI]), p=0.03) but not in BIKE and MOD (p≥0.11) compared with CON and was not different between groups at 6 months (p≥0.36 vs. CON). At 6 months, sleep duration variability was lower in MOD (−31% [−50; −3], p=0.03) and numerically lower in VIG (−28% [−49; 1], p=0.06) relative to CON but was unchanged in BIKE (p=0.17 vs. CON). The effects were, however, primarily attributable to shorter and more irregular sleep in CON over time. Our findings suggest that effects of exercise on sleep in individuals with overweight and obesity may be restricted to leisure-time exercise with a short-term effect on sleep duration after vigorous intensity exercise (3 months) but a more regular sleep pattern after 6 months of moderate and vigorous intensity exercise compared with physically inactive controls. This trial was registered at clinicaltrials.gov with ID NCT01962259

    Effect of exercise training on skeletal muscle protein expression in relation to insulin sensitivity: Per-protocol analysis of a randomized controlled trial (GO-ACTIWE)

    No full text
    Exercise training improves peripheral insulin sensitivity and leads to molecular adaptations in the skeletal muscle. We investigated changes in the expression of key muscle proteins in the glucose metabolic pathway following active commuting by bike or leisure‐time exercise at two different intensities. In addition, potential associations between insulin sensitivity and muscle protein expression were examined. This per‐protocol analysis included 72 out of 130 physically inactive, healthy women and men (20–45 years) with overweight/obesity (BMI: 25–35 kg/m(2)) who completed 6 months of no intervention (CON, n = 12), active commuting by bike (BIKE, n = 14), or leisure‐time exercise of moderate (MOD, n = 28) or vigorous (VIG, n = 18) intensity. Exercise was prescribed 5 days/week with a weekly exercise energy expenditure of 1,600 kcal for women and 2,100 kcal for men. Insulin sensitivity was determined by a hyperinsulinemic euglycemic clamp and skeletal muscle biopsies were obtained from m. vastus lateralis and analyzed for protein expression at baseline and after 3 and 6 months of intervention. We found an increased expression of pyruvate dehydrogenase (PDH) in the exercise groups compared with the control group following 6 months of training. No differential effects were observed on the protein expression following moderate versus vigorous intensity exercise. In addition, we found a positive association between insulin sensitivity and the expression of glucose transporter type 4 as well as PDH. The positive association and the increase in expression of PDH after exercise training points toward a role for PDH in the training‐induced enhancement of insulin sensitivity

    Effects of 3 months of 10-h per-day time-restricted eating and 3 months of follow-up on bodyweight and cardiometabolic health in Danish individuals at high risk of type 2 diabetes: the RESET single-centre, parallel, superiority, open-label, randomised controlled trial

    Get PDF
    BACKGROUND: Time-restricted eating (TRE) has been suggested to be a simple, feasible, and effective dietary strategy for individuals with overweight or obesity. We aimed to investigate the effects of 3 months of 10-h per-day TRE and 3 months of follow-up on bodyweight and cardiometabolic risk factors in individuals at high risk of type 2 diabetes.METHODS: This was a single-centre, parallel, superiority, open-label randomised controlled clinical trial conducted at Steno Diabetes Center Copenhagen (Denmark). The inclusion criteria were age 30-70 years with either overweight (ie, BMI ≥25 kg/m2) and concomitant prediabetes (ie, glycated haemoglobin [HbA1c] 39-47 mmol/mol) or obesity (ie, BMI ≥30 kg/m2) with or without prediabetes and a habitual self-reported eating window (eating and drinking [except for water]) of 12 h per day or more every day and of 14 h per day or more at least 1 day per week. Individuals were randomly assigned 1:1 to 3 months of habitual living (hereafter referred to as the control group) or TRE, which was a self-selected 10-h per-day eating window placed between 0600 h and 2000 h. Randomisation was done in blocks varying in size and was open for participants and research staff, but outcome assessors were masked during statistical analyses. The randomisation list was generated by an external statistician. The primary outcome was change in bodyweight, assessed after 3 months (12 weeks) of the intervention and after 3 months (13 weeks) of follow-up. Adverse events were reported and registered at study visits or if participants contacted study staff to report events between visits. This trial is registered on ClinicalTrials.gov (NCT03854656).FINDINGS: Between March 12, 2019, and March 2, 2022, 100 participants (66 [66%] were female and 34 [34%] were male; median age 59 years [IQR 52-65]) were enrolled and randomly assigned (50 to each group). Of those 100, 46 (92%) in the TRE group and 46 (92%) in the control group completed the intervention period. After 3 months of the intervention, there was no difference in bodyweight between the TRE group and the control group (-0·8 kg, 95% CI -1·7 to 0·2; p=0·099). Being in the TRE group was not associated with a lower bodyweight compared with the control group after subsequent 3-month follow-up (-0·2 kg, -1·6 to 1·2). In the per-protocol analysis, participants who completed the intervention in the TRE group lost 1·0 kg (-1·9 to -0·0; p=0·040) bodyweight compared with the control group after 3 months of intervention, which was not maintained after the 3-month follow-up period (-0·4 kg, -1·8 to 1·0). During the trial and follow-up period, one participant in the TRE group reported a severe adverse event: development of a subcutaneous nodule and pain when the arm was in use. This side-effect was evaluated to be related to the trial procedures.INTERPRETATION: 3 months of 10-h per-day TRE did not lead to clinically relevant effects on bodyweight in middle-aged to older individuals at high risk of type 2 diabetes.FUNDING: Novo Nordisk Foundation, Aalborg University, Helsefonden, and Innovation Fund Denmark.</p
    corecore