12,260 research outputs found
Electron capture in GaAs quantum wells via electron-electron and optic phonon scattering
Electron capture times in a separate confinement quantum well (QW) structure
with finite electron density are calculated for electron-electron (e-e) and
electron-polar optic phonon (e-pop) scattering. We find that the capture time
oscillates as function of the QW width for both processes with the same period,
but with very different amplitudes. For an electron density of 10^11 cm^-2 the
e-e capture time is 10-1000 times larger than the e-pop capture time except for
QW widths near the resonance minima, where it is only 2-3 times larger. With
increasing electron density the e-e capture time decreases and near the
resonance becomes smaller than the e-pop capture time. Our e-e capture time
values are two-to-three orders of magnitude larger than previous results of
Blom et al. [Appl. Phys. Lett. 62, 1490 (1993)]. The role of the e-e capture in
QW lasers is therefore readdressed.Comment: 5 pages, standard LaTeX file + 5 PostScript figures (tarred,
compressed and uuencoded) or by request from [email protected],
accepted to Appl. Phys. Let
An Upper Bound for Random Measurement Error in Causal Discovery
Causal discovery algorithms infer causal relations from data based on several
assumptions, including notably the absence of measurement error. However, this
assumption is most likely violated in practical applications, which may result
in erroneous, irreproducible results. In this work we show how to obtain an
upper bound for the variance of random measurement error from the covariance
matrix of measured variables and how to use this upper bound as a correction
for constraint-based causal discovery. We demonstrate a practical application
of our approach on both simulated data and real-world protein signaling data.Comment: Published in Proceedings of the 34th Annual Conference on Uncertainty
in Artificial Intelligence (UAI-18
Ageing of the LHCb outer tracker
The modules of the LHCb outer tracker have shown to suffer severe gain loss under moderate irradiation. This process is called ageing. Ageing of the modules results from contamination of the gas system by glue, araldite AY 103-1, used in their construction. In this thesis the ageing process will be shown. The schemes known to reduce, reverse, or prevent ageing have been investigated to determine their effect on the detector performance. The addition of O2 to the gas mixture lowers the detector response by an acceptable amount and does not affect the gas transport properties significantly. The ageing rate is decreased after extensive flushing and HV training could eventually repair the irradiation damage. The risks of HV training have been assessed. Furthermore, several gaseous and aquatic additions have been tested for their capability to prevent, or moderate ageing, but none showed significant improvement
Transmission Power Measurements for Wireless Sensor Nodes and their Relationship to the Battery Level
In this work we focus on the new generation EYESIFXv2 [1] wireless sensor nodes by carrying out experimental measurements on power related quantities. In particular, our aim is to characterize the relationship between the level of the battery and the transmission power radiated by the node. The present results point out the non linear and non trivial effects due to the output potentiometer which can be used to tune the transmission power. It shall be observed that a thorough study of how battery and/or potentiometer settings translate to actual transmitted power levels is crucial to e.g. design correct power control algorithms, which can effectively operate under any operational condition of the wireless sensor device
Beyond Structural Causal Models: Causal Constraints Models
Structural Causal Models (SCMs) provide a popular causal modeling framework.
In this work, we show that SCMs are not flexible enough to give a complete
causal representation of dynamical systems at equilibrium. Instead, we propose
a generalization of the notion of an SCM, that we call Causal Constraints Model
(CCM), and prove that CCMs do capture the causal semantics of such systems. We
show how CCMs can be constructed from differential equations and initial
conditions and we illustrate our ideas further on a simple but ubiquitous
(bio)chemical reaction. Our framework also allows to model functional laws,
such as the ideal gas law, in a sensible and intuitive way.Comment: Published in Proceedings of the 35th Annual Conference on Uncertainty
in Artificial Intelligence (UAI-19
Prediction of gene–phenotype associations in humans, mice, and plants using phenologs
All authors are with the Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA. -- Ulf Martin Singh-Blom is with the Program in Computational and Applied Mathematics, The University of Texas at Austin, Austin, TX 78712, USA, and th Unit of Computational Medicine, Department of Medicine, Karolinska Institutet, Stockholm 171 76, Sweden. -- Kriston L. McGary is with the Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA.Background: Phenotypes and diseases may be related to seemingly dissimilar phenotypes in other species by means of the orthology of underlying genes. Such “orthologous phenotypes,” or “phenologs,” are examples of deep homology, and may be used to predict additional candidate disease genes.
Results: In this work, we develop an unsupervised algorithm for ranking phenolog-based candidate disease genes through the integration of predictions from the k nearest neighbor phenologs, comparing classifiers and weighting functions by cross-validation. We also improve upon the original method by extending the theory to paralogous phenotypes. Our algorithm makes use of additional phenotype data — from chicken, zebrafish, and E. coli, as well as new datasets for C. elegans — establishing that several types of annotations may be treated as phenotypes. We demonstrate the use of our algorithm to predict novel candidate genes for human atrial fibrillation (such as HRH2, ATP4A, ATP4B, and HOPX) and epilepsy (e.g., PAX6 and NKX2-1). We suggest gene candidates for pharmacologically-induced seizures in mouse, solely based on orthologous phenotypes from E. coli. We also explore the prediction of plant gene–phenotype associations, as for the Arabidopsis response to vernalization phenotype.
Conclusions: We are able to rank gene predictions for a significant portion of the diseases in the Online Mendelian Inheritance in Man database. Additionally, our method suggests candidate genes for mammalian seizures based only on bacterial phenotypes and gene orthology. We demonstrate that phenotype information may come from diverse sources, including drug sensitivities, gene ontology biological processes, and in situ hybridization annotations. Finally, we offer testable candidates for a variety of human diseases, plant traits, and other classes of phenotypes across a wide array of species.Center for Systems and Synthetic BiologyInstitute for Cellular and Molecular [email protected]
Layout level design for testability strategy applied to a CMOS cell library
The layout level design for testability (LLDFT) rules used here allow to avoid some hard to detect faults or even undetectable faults on a cell library by modifying the cell layout without changing their behavior and achieving a good level of reliability. These rules avoid some open faults or reduce their appearance probability. The main purpose has been to apply that set of LLDFT rules on the cells of the library designed at the Centre Nacional de Microelectronica (CNM) in order to obtain a highly testable cell library. The authors summarize the main results (area overhead and performance degradation) of the application of the LLDFT rules on the cell
Resonating silicon beam force sensor
A resonating silicon-beam force sensor is being deveoped using micro-machining of silicon and IC-compatible processes. Results are reported here of measurements on the force-to-frequency transfer of bare silicon prototypes. The measurements with forces on the sensor beam up to 0.4 N shows a frequency shift of 3.1 to 5.2 times the unloaded resonance frequency f0(f0 congruent with 3 to 5 kHz), depending on the exact dimensions. Considering these figures, we can predict a frequency shift of 18.3 to 27.6 kHz at the maximum load of 1.0 N for the measured samples. Due to the sample lay-out, a force transfer is present from the externally applied force to the actual pulling force on the sensor beam. Using a simple model to calculate this reduction, we obtain good agreement between the measurements and predictions
On the Nature of MeV-blazars
Broad-band spectra of the FSRQ (flat-spectrum-radio quasars) detected in the
high energy gamma-ray band imply that there may be two types of such objects:
those with steep gamma-ray spectra, hereafter called MeV-blazars, and those
with flat gamma-ray spectra, GeV-blazars. We demonstrate that this difference
can be explained in the context of the ERC (external-radiation-Compton) model
using the same electron injection function. A satisfactory unification is
reachable, provided that: (a) spectra of GeV-blazars are produced by internal
shocks formed at the distances where cooling of relativistic electrons in a jet
is dominated by Comptonization of broad emission lines, whereas spectra of
MeV-blazars are produced at the distances where cooling of relativistic
electrons is dominated by Comptonization of near-IR radiation from hot dust;
(b) electrons are accelerated via a two step process and their injection
function takes the form of a double power-law, with the break corresponding to
the threshold energy for the diffusive shock acceleration. Direct predictions
of our model are that, on average, variability time scales of the MeV-blazars
should be longer than variability time scales of the GeV-blazars, and that both
types of the blazar phenomenon can appear in the same object.Comment: Accepted for publication in the Astrophysical Journa
Recommended from our members
Surveying Customer Perceptions of Road Infrastructure Comfort
Performance is a key tenet of infrastructure management. This paper looks at a measure of service level in infrastructure, namely, road smoothness. Conventionally, studies of this type have focused on the technical measures themselves. This paper presents the results of the first stage of a New Zealand-based case study that, by contrast, explored the engineering processes through the lens of the outcomes they sought to achieve; in this instance, customer comfort. The paper asserts that if performance is to be determined by outcomes, then a holistic approach is needed, including a revised definition of technical performance.This research was funded by the NZTA.This is the author accepted manuscript. The final version is available from Institute of Civil Engineers via http://dx.doi.org/10.1680/iasma.15.0000
- …
