5,414 research outputs found

    Parallel Recursive State Compression for Free

    Get PDF
    This paper focuses on reducing memory usage in enumerative model checking, while maintaining the multi-core scalability obtained in earlier work. We present a tree-based multi-core compression method, which works by leveraging sharing among sub-vectors of state vectors. An algorithmic analysis of both worst-case and optimal compression ratios shows the potential to compress even large states to a small constant on average (8 bytes). Our experiments demonstrate that this holds up in practice: the median compression ratio of 279 measured experiments is within 17% of the optimum for tree compression, and five times better than the median compression ratio of SPIN's COLLAPSE compression. Our algorithms are implemented in the LTSmin tool, and our experiments show that for model checking, multi-core tree compression pays its own way: it comes virtually without overhead compared to the fastest hash table-based methods.Comment: 19 page

    On the Nature of MeV-blazars

    Full text link
    Broad-band spectra of the FSRQ (flat-spectrum-radio quasars) detected in the high energy gamma-ray band imply that there may be two types of such objects: those with steep gamma-ray spectra, hereafter called MeV-blazars, and those with flat gamma-ray spectra, GeV-blazars. We demonstrate that this difference can be explained in the context of the ERC (external-radiation-Compton) model using the same electron injection function. A satisfactory unification is reachable, provided that: (a) spectra of GeV-blazars are produced by internal shocks formed at the distances where cooling of relativistic electrons in a jet is dominated by Comptonization of broad emission lines, whereas spectra of MeV-blazars are produced at the distances where cooling of relativistic electrons is dominated by Comptonization of near-IR radiation from hot dust; (b) electrons are accelerated via a two step process and their injection function takes the form of a double power-law, with the break corresponding to the threshold energy for the diffusive shock acceleration. Direct predictions of our model are that, on average, variability time scales of the MeV-blazars should be longer than variability time scales of the GeV-blazars, and that both types of the blazar phenomenon can appear in the same object.Comment: Accepted for publication in the Astrophysical Journa

    Exact solution of the Zeeman effect in single-electron systems

    Full text link
    Contrary to popular belief, the Zeeman effect can be treated exactly in single-electron systems, for arbitrary magnetic field strengths, as long as the term quadratic in the magnetic field can be ignored. These formulas were actually derived already around 1927 by Darwin, using the classical picture of angular momentum, and presented in their proper quantum-mechanical form in 1933 by Bethe, although without any proof. The expressions have since been more or less lost from the literature; instead, the conventional treatment nowadays is to present only the approximations for weak and strong fields, respectively. However, in fusion research and other plasma physics applications, the magnetic fields applied to control the shape and position of the plasma span the entire region from weak to strong fields, and there is a need for a unified treatment. In this paper we present the detailed quantum-mechanical derivation of the exact eigenenergies and eigenstates of hydrogen-like atoms and ions in a static magnetic field. Notably, these formulas are not much more complicated than the better-known approximations. Moreover, the derivation allows the value of the electron spin gyromagnetic ratio gsg_s to be different from 2. For completeness, we then review the details of dipole transitions between two hydrogenic levels, and calculate the corresponding Zeeman spectrum. The various approximations made in the derivation are also discussed in details.Comment: 18 pages, 4 figures. Submitted to Physica Script

    COMPTEL observations of the quasar PKS 0528+134 during the first 3.5 years of the CGRO mission

    Get PDF
    The COMPTEL observations of the blazar-type quasar PKS 0528+134 in the energy range 0.75 MeV to 30 MeV carried out between April 1991 and September 1994 have been analyzed. During the first two years PKS 0528+134 was most significantly detected at energies above 3 MeV. During the last year there is only evidence for the quasar at energies below 3 MeV indicating a spectral change. The time-averaged COMPTEL energy spectrum between 0.75 MeV and 30 MeV is well represented by a power-law shape. Spectra collected from different observational periods reveal different power-law shapes: a hard state during flaring observations reported by EGRET, and a soft state otherwise. The combined simultaneous EGRET and COMPTEL spectra indicate these two spectral states as well. During low intensisty gamma-ray phases no spectral break is obvious from the combined COMPTEL and EGRET measurements. For the gamma-ray flaring phases however, the combined COMPTEL and EGRET data require a spectral bending at MeV-energies. By fitting broken power-law functions the best-fit values for the break in photon index range between 0.6 and 1.7, and for the break energy between ~5 MeV and ~20 MeV. Because the flux values measured by COMPTEL below 3 MeV in both states are roughly equal, the observations would be consistent with an additional spectral component showing up during gamma-ray flaring phases of PKS 0528+134. Such a component could be introduced by e.g. a high-energy electron-positron population with a low-energy cutoff in their bulk Lorentz factor distribution. The multiwavelength spectrum of PKS 0528+134 for gamma-ray flaring phases shows that the major energy release across the entire electro-magnetic spectrum is measured at MeV-energies.Comment: 10 pages, 8 postscript figures, latex, to appear in: A&A 328, 33 (1997

    IGR J22517+2218=MG3 J225155+2217: a new gamma-ray lighthouse in the distant Universe

    Full text link
    We report on the identification of a new soft gamma ray source, namely IGR J22517+2218, detected with IBIS/INTEGRAL. The source, which has an observed 20-100 keV flux of ~4 x10^-11 erg cm-2 s-1, is spatially coincident with MG3 J225155+2217, a quasar at z=3.668. The Swift/XRT 0.5-10 keV continuum is flat (Gamma=1.5) with evidence for a spectral curvature below 1-2 keV either due to intrinsic absorption (NH=3 +/- 2 x 10^22 cm-2) or to a change in slope (Delta Gamma= 0.5). X-ray observations indicate flux variability over a 6 days period which is further supported by a flux mismatch between Swift and INTEGRAL spectra. IGR J22517+2218 is radio loud and has a flat radio spectrum; optically it is a broad line emitting quasar with the atypical property of hosting a narrow line absorption system. The Source Spectral Energy Distribution is unusual compared to blazars of similar type: either it has the synchrotron peak in the X/gamma-ray band (i.e. much higher than generally observed) or the Compton peak in the MeV range (i.e. lower than typically measured). IGR J22517+2218=MG3 J225155+2217 is the second most distant blazar detected above 20 keV and a gamma-ray lighthouse shining from the edge of our Universe.Comment: 4 pages, 4 figures, Accepted for publication in Astrophysical Journal Letter

    COMPTEL Observations of AGN at MeV-Energies

    Get PDF
    The COMPTEL experiment aboard CGRO, exploring the previously unknown sky at MeV-energies, has so far detected 10 Active Galactic Nuclei (AGN): 9 blazars and the radio galaxy Centaurus A. No Seyfert galaxy has been found yet. With these results COMPTEL has opened the field of extragalactic Gamma-ray astronomy in the MeV-band.Comment: 4 pages, 2 figures including 1 color plot, to appear in the Proceedings of the 3rd INTEGRAL Workshop "The Extreme Universe", held in Taormina, Italy, 14-18 September 199

    Program Correctness by Transformation

    Get PDF
    Deductive program verification can be used effectively to verify high-level programs, but can be challenging for low-level, high-performance code. In this paper, we argue that compilation and program transformations should be made annotation-aware, i.e. during compilation and program transformation, not only the code should be changed, but also the corresponding annotations. As a result, if the original high-level program could be verified, also the resulting low-level program can be verified. We illustrate this approach on a concrete case, where loop annotations that capture possible loop parallelisations are translated into specifications of an OpenCL kernel that corresponds to the parallel loop. We also sketch how several commonly used OpenCL kernel transformations can be adapted to also transform the corresponding program annotations. Finally, we conclude the paper with a list of research challenges that need to be addressed to further develop this approach

    Does the Blazar Gamma-Ray Spectrum Harden with Increasing Flux? Analysis of 9 Years of EGRET Data

    Full text link
    The Energetic Gamma-Ray Experiment Telescope (EGRET) on the Compton Gamma-Ray Observatory (CGRO) discovered gamma-ray emission from more than 67 blazars during its 9 yr lifetime. We conducted an exhaustive search of the EGRET archives and selected all the blazars that were observed multiple times and were bright enough to enable a spectral analysis using standard power-law models. The sample consists of 18 flat-spectrum radio quasars(FSRQs), 6 low-frequency peaked BL Lac objects (LBLs) and 2 high-frequency peaked BL Lac objects (HBLs). We do not detect any clear pattern in the variation of spectral index with flux. Some of the blazars do not show any statistical evidence for spectral variability. The spectrum hardens with increasing flux in a few cases. There is also evidence for a flux-hardness anticorrelation at low fluxes in five blazars. The well-observed blazars (3C 279, 3C 273, PKS 0528+134, PKS 1622-297 PKS 0208-512) do not show any overall trend in the long-term spectral dependence on flux, but the sample shows a mixture of hard and soft states. We observed a previously unreported spectral hysteresis at weekly timescales in all three FSRQs for which data from flares lasting for ~(3-4) weeks were available. All three sources show a counterclockwise rotation, despite the widely different flux profiles. We analyze the observed spectral behavior in the context of various inverse Compton mechanisms believed to be responsible for emission in the EGRET energy range. Our analysis uses the EGRET skymaps that were regenerated to include the changes in performance during the mission

    Ultimate performance of polymer:fullerene bulk heterojunction tandem solar cells

    Get PDF
    We present the model calculations to explore the potential of polymer:fullerene tandem solar cells. As an approach we use a combined optical and electrical device model, where the absorption profiles are used as starting point for the numerical current-voltage calculations. With this model a maximum power efficiency of 11.7% for single cells has been achieved as a reference. For tandem structures with a ZnO/poly(3,4-ethylenedioxythiophene)/ poly(styrenesulphonic acid) middle electrode an ultimate efficiency of 14.1% has been calculated. In the optimum configuration the subcell with the narrowest band gap is placed closest to the incoming light. Consequently, tandem structures are expected to enhance the performance of optimized single cells by about 20%. © 2011 American Institute of Physics

    Spaceborne radar observations: A guide for Magellan radar-image analysis

    Get PDF
    Geologic analyses of spaceborne radar images of Earth are reviewed and summarized with respect to detecting, mapping, and interpreting impact craters, volcanic landforms, eolian and subsurface features, and tectonic landforms. Interpretations are illustrated mostly with Seasat synthetic aperture radar and shuttle-imaging-radar images. Analogies are drawn for the potential interpretation of radar images of Venus, with emphasis on the effects of variation in Magellan look angle with Venusian latitude. In each landform category, differences in feature perception and interpretive capability are related to variations in imaging geometry, spatial resolution, and wavelength of the imaging radar systems. Impact craters and other radially symmetrical features may show apparent bilateral symmetry parallel to the illumination vector at low look angles. The styles of eruption and the emplacement of major and minor volcanic constructs can be interpreted from morphological features observed in images. Radar responses that are governed by small-scale surface roughness may serve to distinguish flow types, but do not provide unambiguous information. Imaging of sand dunes is rigorously constrained by specific angular relations between the illumination vector and the orientation and angle of repose of the dune faces, but is independent of radar wavelength. With a single look angle, conditions that enable shallow subsurface imaging to occur do not provide the information necessary to determine whether the radar has recorded surface or subsurface features. The topographic linearity of many tectonic landforms is enhanced on images at regional and local scales, but the detection of structural detail is a strong function of illumination direction. Nontopographic tectonic lineaments may appear in response to contrasts in small-surface roughness or dielectric constant. The breakpoint for rough surfaces will vary by about 25 percent through the Magellan viewing geometries from low to high Venusian latitudes. Examples of anomalies and system artifacts that can affect image interpretation are described
    corecore