5,414 research outputs found
Parallel Recursive State Compression for Free
This paper focuses on reducing memory usage in enumerative model checking,
while maintaining the multi-core scalability obtained in earlier work. We
present a tree-based multi-core compression method, which works by leveraging
sharing among sub-vectors of state vectors.
An algorithmic analysis of both worst-case and optimal compression ratios
shows the potential to compress even large states to a small constant on
average (8 bytes). Our experiments demonstrate that this holds up in practice:
the median compression ratio of 279 measured experiments is within 17% of the
optimum for tree compression, and five times better than the median compression
ratio of SPIN's COLLAPSE compression.
Our algorithms are implemented in the LTSmin tool, and our experiments show
that for model checking, multi-core tree compression pays its own way: it comes
virtually without overhead compared to the fastest hash table-based methods.Comment: 19 page
On the Nature of MeV-blazars
Broad-band spectra of the FSRQ (flat-spectrum-radio quasars) detected in the
high energy gamma-ray band imply that there may be two types of such objects:
those with steep gamma-ray spectra, hereafter called MeV-blazars, and those
with flat gamma-ray spectra, GeV-blazars. We demonstrate that this difference
can be explained in the context of the ERC (external-radiation-Compton) model
using the same electron injection function. A satisfactory unification is
reachable, provided that: (a) spectra of GeV-blazars are produced by internal
shocks formed at the distances where cooling of relativistic electrons in a jet
is dominated by Comptonization of broad emission lines, whereas spectra of
MeV-blazars are produced at the distances where cooling of relativistic
electrons is dominated by Comptonization of near-IR radiation from hot dust;
(b) electrons are accelerated via a two step process and their injection
function takes the form of a double power-law, with the break corresponding to
the threshold energy for the diffusive shock acceleration. Direct predictions
of our model are that, on average, variability time scales of the MeV-blazars
should be longer than variability time scales of the GeV-blazars, and that both
types of the blazar phenomenon can appear in the same object.Comment: Accepted for publication in the Astrophysical Journa
Exact solution of the Zeeman effect in single-electron systems
Contrary to popular belief, the Zeeman effect can be treated exactly in
single-electron systems, for arbitrary magnetic field strengths, as long as the
term quadratic in the magnetic field can be ignored. These formulas were
actually derived already around 1927 by Darwin, using the classical picture of
angular momentum, and presented in their proper quantum-mechanical form in 1933
by Bethe, although without any proof. The expressions have since been more or
less lost from the literature; instead, the conventional treatment nowadays is
to present only the approximations for weak and strong fields, respectively.
However, in fusion research and other plasma physics applications, the magnetic
fields applied to control the shape and position of the plasma span the entire
region from weak to strong fields, and there is a need for a unified treatment.
In this paper we present the detailed quantum-mechanical derivation of the
exact eigenenergies and eigenstates of hydrogen-like atoms and ions in a static
magnetic field. Notably, these formulas are not much more complicated than the
better-known approximations. Moreover, the derivation allows the value of the
electron spin gyromagnetic ratio to be different from 2. For
completeness, we then review the details of dipole transitions between two
hydrogenic levels, and calculate the corresponding Zeeman spectrum. The various
approximations made in the derivation are also discussed in details.Comment: 18 pages, 4 figures. Submitted to Physica Script
COMPTEL observations of the quasar PKS 0528+134 during the first 3.5 years of the CGRO mission
The COMPTEL observations of the blazar-type quasar PKS 0528+134 in the energy
range 0.75 MeV to 30 MeV carried out between April 1991 and September 1994 have
been analyzed. During the first two years PKS 0528+134 was most significantly
detected at energies above 3 MeV. During the last year there is only evidence
for the quasar at energies below 3 MeV indicating a spectral change. The
time-averaged COMPTEL energy spectrum between 0.75 MeV and 30 MeV is well
represented by a power-law shape. Spectra collected from different
observational periods reveal different power-law shapes: a hard state during
flaring observations reported by EGRET, and a soft state otherwise. The
combined simultaneous EGRET and COMPTEL spectra indicate these two spectral
states as well. During low intensisty gamma-ray phases no spectral break is
obvious from the combined COMPTEL and EGRET measurements. For the gamma-ray
flaring phases however, the combined COMPTEL and EGRET data require a spectral
bending at MeV-energies. By fitting broken power-law functions the best-fit
values for the break in photon index range between 0.6 and 1.7, and for the
break energy between ~5 MeV and ~20 MeV. Because the flux values measured by
COMPTEL below 3 MeV in both states are roughly equal, the observations would be
consistent with an additional spectral component showing up during gamma-ray
flaring phases of PKS 0528+134. Such a component could be introduced by e.g. a
high-energy electron-positron population with a low-energy cutoff in their bulk
Lorentz factor distribution. The multiwavelength spectrum of PKS 0528+134 for
gamma-ray flaring phases shows that the major energy release across the entire
electro-magnetic spectrum is measured at MeV-energies.Comment: 10 pages, 8 postscript figures, latex, to appear in: A&A 328, 33
(1997
IGR J22517+2218=MG3 J225155+2217: a new gamma-ray lighthouse in the distant Universe
We report on the identification of a new soft gamma ray source, namely IGR
J22517+2218, detected with IBIS/INTEGRAL. The source, which has an observed
20-100 keV flux of ~4 x10^-11 erg cm-2 s-1, is spatially coincident with MG3
J225155+2217, a quasar at z=3.668. The Swift/XRT 0.5-10 keV continuum is flat
(Gamma=1.5) with evidence for a spectral curvature below 1-2 keV either due to
intrinsic absorption (NH=3 +/- 2 x 10^22 cm-2) or to a change in slope (Delta
Gamma= 0.5). X-ray observations indicate flux variability over a 6 days period
which is further supported by a flux mismatch between Swift and INTEGRAL
spectra. IGR J22517+2218 is radio loud and has a flat radio spectrum; optically
it is a broad line emitting quasar with the atypical property of hosting a
narrow line absorption system. The Source Spectral Energy Distribution is
unusual compared to blazars of similar type: either it has the synchrotron peak
in the X/gamma-ray band (i.e. much higher than generally observed) or the
Compton peak in the MeV range (i.e. lower than typically measured). IGR
J22517+2218=MG3 J225155+2217 is the second most distant blazar detected above
20 keV and a gamma-ray lighthouse shining from the edge of our Universe.Comment: 4 pages, 4 figures, Accepted for publication in Astrophysical Journal
Letter
COMPTEL Observations of AGN at MeV-Energies
The COMPTEL experiment aboard CGRO, exploring the previously unknown sky at
MeV-energies, has so far detected 10 Active Galactic Nuclei (AGN): 9 blazars
and the radio galaxy Centaurus A. No Seyfert galaxy has been found yet. With
these results COMPTEL has opened the field of extragalactic Gamma-ray astronomy
in the MeV-band.Comment: 4 pages, 2 figures including 1 color plot, to appear in the
Proceedings of the 3rd INTEGRAL Workshop "The Extreme Universe", held in
Taormina, Italy, 14-18 September 199
Program Correctness by Transformation
Deductive program verification can be used effectively to verify high-level programs, but can be challenging for low-level, high-performance code. In this paper, we argue that compilation and program transformations should be made annotation-aware, i.e. during compilation and program transformation, not only the code should be changed, but also the corresponding annotations. As a result, if the original high-level program could be verified, also the resulting low-level program can be verified. We illustrate this approach on a concrete case, where loop annotations that capture possible loop parallelisations are translated into specifications of an OpenCL kernel that corresponds to the parallel loop. We also sketch how several commonly used OpenCL kernel transformations can be adapted to also transform the corresponding program annotations. Finally, we conclude the paper with a list of research challenges that need to be addressed to further develop this approach
Does the Blazar Gamma-Ray Spectrum Harden with Increasing Flux? Analysis of 9 Years of EGRET Data
The Energetic Gamma-Ray Experiment Telescope (EGRET) on the Compton Gamma-Ray
Observatory (CGRO) discovered gamma-ray emission from more than 67 blazars
during its 9 yr lifetime. We conducted an exhaustive search of the EGRET
archives and selected all the blazars that were observed multiple times and
were bright enough to enable a spectral analysis using standard power-law
models. The sample consists of 18 flat-spectrum radio quasars(FSRQs), 6
low-frequency peaked BL Lac objects (LBLs) and 2 high-frequency peaked BL Lac
objects (HBLs). We do not detect any clear pattern in the variation of spectral
index with flux. Some of the blazars do not show any statistical evidence for
spectral variability. The spectrum hardens with increasing flux in a few cases.
There is also evidence for a flux-hardness anticorrelation at low fluxes in
five blazars. The well-observed blazars (3C 279, 3C 273, PKS 0528+134, PKS
1622-297 PKS 0208-512) do not show any overall trend in the long-term spectral
dependence on flux, but the sample shows a mixture of hard and soft states. We
observed a previously unreported spectral hysteresis at weekly timescales in
all three FSRQs for which data from flares lasting for ~(3-4) weeks were
available. All three sources show a counterclockwise rotation, despite the
widely different flux profiles. We analyze the observed spectral behavior in
the context of various inverse Compton mechanisms believed to be responsible
for emission in the EGRET energy range. Our analysis uses the EGRET skymaps
that were regenerated to include the changes in performance during the mission
Ultimate performance of polymer:fullerene bulk heterojunction tandem solar cells
We present the model calculations to explore the potential of polymer:fullerene tandem solar cells. As an approach we use a combined optical and electrical device model, where the absorption profiles are used as starting point for the numerical current-voltage calculations. With this model a maximum power efficiency of 11.7% for single cells has been achieved as a reference. For tandem structures with a ZnO/poly(3,4-ethylenedioxythiophene)/ poly(styrenesulphonic acid) middle electrode an ultimate efficiency of 14.1% has been calculated. In the optimum configuration the subcell with the narrowest band gap is placed closest to the incoming light. Consequently, tandem structures are expected to enhance the performance of optimized single cells by about 20%. © 2011 American Institute of Physics
Spaceborne radar observations: A guide for Magellan radar-image analysis
Geologic analyses of spaceborne radar images of Earth are reviewed and summarized with respect to detecting, mapping, and interpreting impact craters, volcanic landforms, eolian and subsurface features, and tectonic landforms. Interpretations are illustrated mostly with Seasat synthetic aperture radar and shuttle-imaging-radar images. Analogies are drawn for the potential interpretation of radar images of Venus, with emphasis on the effects of variation in Magellan look angle with Venusian latitude. In each landform category, differences in feature perception and interpretive capability are related to variations in imaging geometry, spatial resolution, and wavelength of the imaging radar systems. Impact craters and other radially symmetrical features may show apparent bilateral symmetry parallel to the illumination vector at low look angles. The styles of eruption and the emplacement of major and minor volcanic constructs can be interpreted from morphological features observed in images. Radar responses that are governed by small-scale surface roughness may serve to distinguish flow types, but do not provide unambiguous information. Imaging of sand dunes is rigorously constrained by specific angular relations between the illumination vector and the orientation and angle of repose of the dune faces, but is independent of radar wavelength. With a single look angle, conditions that enable shallow subsurface imaging to occur do not provide the information necessary to determine whether the radar has recorded surface or subsurface features. The topographic linearity of many tectonic landforms is enhanced on images at regional and local scales, but the detection of structural detail is a strong function of illumination direction. Nontopographic tectonic lineaments may appear in response to contrasts in small-surface roughness or dielectric constant. The breakpoint for rough surfaces will vary by about 25 percent through the Magellan viewing geometries from low to high Venusian latitudes. Examples of anomalies and system artifacts that can affect image interpretation are described
- …