1,358 research outputs found

    Quantified HI Morphology VII: star-formation and tidal influence on local dwarf HI morphology

    Get PDF
    Scale-invariant morphology parameters applied to atomic hydrogen maps (HI) of galaxies can be used to quantify the effects of tidal interaction or star-formation on the ISM. Here we apply these parameters, Concentration, Asymmetry, Smoothness, Gini, M20, and the GM parameter, to two public surveys of nearby dwarf galaxies, the VLA-ANGST and LITTLE-THINGS survey, to explore whether tidal interaction or the ongoing or past star-formation is a dominant force shaping the HI disk of these dwarfs. Previously, HI morphological criteria were identified for ongoing spiral-spiral interactions. When we apply these to the Irregular dwarf population, they either select almost all or none of the population. We find that only the Asymmetry-based criteria can be used to identify very isolated dwarfs (i.e., these have a low tidal indication). Otherwise, there is little or no relation between the level of tidal interaction and the HI morphology. We compare the HI morphology to three star-formation rates based on either Halpha, FUV or the resolved stellar population, probing different star-formation time-scales. The HI morphology parameters that trace the inequality of the distribution, the Gini, GM, and M20 parameters, correlate weakly with all these star-formation rates. This is in line with the picture that local physics dominates the ISM appearance and not tidal effects. Finally, we compare the SDSS measures of star-formation and stellar mass to the HI morphological parameters for all four HI surveys. In the two lower-resolution HI surveys (12"), there is no relation between star-formation measures and HI morphology. The morphology of the two high-resolution HI surveys (6"), the Asymmetry, Smoothness, Gini, M20, and GM, do show a link to the total star-formation, but a weak one.Comment: 26 figures, 4 tables, two appendices. Third appendix (HI maps of all galaxies) omitted. Accepted by MNRA

    Spectroscopy of Low Surface Brightness Galaxies with the Hobby-Eberly Telescope

    Get PDF
    We have obtained low resolution spectra of nineteen red and blue low surface brightness galaxies, using the Marcario Low Resolution Spectrograph on the 9.2m Hobby-Eberly Telescope. These galaxies form a very heterogeneous class, whose spectra qualitatively resemble those of high surface brightness galaxies covering the full range of spectra seen in galaxies of Hubble types from E to Irr. We use a combination of emission line (EW(Halpha), NII/Halpha) and absorption line (Mgb, Hbeta, ) based diagnostics to investigate the star-formation and chemical enrichment histories of these galaxies. These are diverse, with some galaxies having low metallicity and very young mean stellar ages, and other galaxies showing old, super-solar metallicity stellar populations. In contrast with some previous studies which found a strong trend of decreasing metallicity with decreasing central surface brightness, we find a population of galaxies with low surface brightness and near-solar metallicity. Correlations between several of the gas phase and stellar population age and metallicity indicators are used to place contraints on plausible evolutionary scenarios for LSB galaxies. The redshift range spanned by these galaxies is broad, with radial velocities from 3400 km/s to more than 65000 km/s. A subset of the sample galaxies have published HI redshifts and gas masses based on observations with the Arecibo 305m single-dish radio telescope, which place these galaxies far off of the mean Tully-Fisher relation. Our new optical redshifts do not agree with the published HI redshifts for these galaxies. Most of the discrepancies can be explained by beam confusion in the Arecibo observations, causing erroneous HI detections for some of the galaxies.Comment: 31 pages, 12 figures, 7 tables. Uses emulateapj5.sty and onecolfloat5.sty, which are included. Accepted for publication in the Astronomical Journa

    Local Group dSph radio survey with ATCA (III): Constraints on Particle Dark Matter

    Full text link
    We performed a deep search for radio synchrotron emissions induced by weakly interacting massive particles (WIMPs) annihilation or decay in six dwarf spheroidal (dSph) galaxies of the Local Group. Observations were conducted with the Australia Telescope Compact Array (ATCA) at 16 cm wavelength, with an rms sensitivity better than 0.05 mJy/beam in each field. In this work, we first discuss the uncertainties associated with the modeling of the expected signal, such as the shape of the dark matter (DM) profile and the dSph magnetic properties. We then investigate the possibility that point-sources detected in the proximity of the dSph optical center might be due to the emission from a DM cuspy profile. No evidence for an extended emission over a size of few arcmin (which is the DM halo size) has been detected. We present the associated bounds on the WIMP parameter space for different annihilation/decay final states and for different astrophysical assumptions. If the confinement of electrons and positrons in the dSph is such that the majority of their power is radiated within the dSph region, we obtain constraints on the WIMP annihilation rate which are well below the thermal value for masses up to few TeV. On the other hand, for conservative assumptions on the dSph magnetic properties, the bounds can be dramatically relaxed. We show however that, within the next 10 years and regardless of the astrophysical assumptions, it will be possible to progressively close in on the full parameter space of WIMPs by searching for radio signals in dSphs with SKA and its precursors.Comment: 17 pages, 6 figure panels. Companion papers: arXiv:1407.5479 and arXiv:1407.5482. v3: minor revision, matches published versio

    Quantified Morphology of HI Disks in the Universe

    Get PDF
    he upcoming new perspective of the high redshift Universe in the 21 cm line of atomic hydrogen opens possibilities to explore topics of spiral disk evolution, hitherto reserved for the optical regime. The growth of spiral gas disks over Cosmic time can be explored with the new generation of radio telescopes, notably the SKA, and its precursors, as accurately as with the Hubble Space Telescope for stellar disks. Since the atomic hydrogen gas is the building block of these disks, it should trace their formation accurately. Morphology of HI disks can now equally be quantified over Cosmic time. In studies of HST deep fields, the optical or UV morphology of high-redshift galaxy disks have been characterized using a few quantities: concentration (C), asymmetry (A), smoothness (S), second-order-moment (M20), the GINI coefficient (G), and Ellipticity (E). We have applied these parameters across wavelengths and compared them to the HI morphology over the THINGS sample. NGC 3184, an unperturbed disk, and NGC 5194, the canonical 3:1 interaction, serve as examples for quantified morphology. We find that morphology parameters determined in HI are as good or better a tracer of interaction compared to those in any other wavelength, notably in Asymmetry, Gini and M20. This opens the possibility of using them in the parameterization pipeline for SKA precursor catalogues to select interacting or harassed galaxies from their HI morphology. Asymmetry, Gini and M20 may be redefined for use on data-cubes rather than HI column density image.Comment: 6 pages, 3 figures, proceeding of the conference "Panoramic Radio Astronomy: Wide-field 1-2 GHz research on galaxy evolution", June 02 - 05 2009, Groningen, update after small edit

    On the Neutral Gas Content and Environment of NGC 3109 and the Antlia Dwarf Galaxy

    Get PDF
    As part of a continuing survey of nearby galaxies, we have mapped the neutral gas content of the low surface brightness, Magellanic-type galaxy NGC 3109 --- and its environment, including the Antlia dwarf galaxy --- at unprecedented velocity resolution and brightness sensitivity. The HI mass of NGC 3109 is measured to be (3.8 +/- 0.5) x 10^8 Msun. A substantial warp in the disk of NGC 3109 is detected in the HI emission image in the form of an extended low surface brightness feature. We report a positive detection in HI of the nearby Antlia dwarf galaxy, and measure its total neutral gas mass to be (6.8 +/- 1.4) x 10^5 Msun. We show the warp in NGC 3109 to lie at exactly the same radial velocity as the gas in the Antlia dwarf galaxy and speculate that Antlia disturbed the disk of NGC 3109 during a mild encounter ~1 Gyr in the past. HI data for a further eight galaxies detected in the background are presented.Comment: Accepted for publication in A

    Evidence for a clumpy, rotating gas disk in a submillimeter galaxy at z=4

    Get PDF
    We present Karl G. Jansky Very Large Array (VLA) observations of the CO(2-1) emission in the z=4.05 submillimeter galaxy (SMG) GN20. These high-resolution data allow us to image the molecular gas at 1.3 kpc resolution just 1.6 Gyr after the Big Bang. The data reveal a clumpy, extended gas reservoir, 14 +/- 4 kpc in diameter, in unprecedented detail. A dynamical analysis shows that the data are consistent with a rotating disk of total dynamical mass 5.4 +/- 2.4 X 10^11 M_sun. We use this dynamical mass estimate to constrain the CO-to-H_2 mass conversion factor (alpha_CO), finding alpha_CO=1.1 +/- 0.6 M_sun (K km s^-1 pc^2)^-1. We identify five distinct molecular gas clumps in the disk of GN20 with masses a few percent of the total gas mass, brightness temperatures of 16-31K, and surface densities of >3,200-4,500 X (alpha_CO/0.8) M_sun pc^-2. Virial mass estimates indicate they could be self-gravitating, and we constrain their CO-to-H_2 mass conversion factor to be <0.2-0.7 M_sun (K km s^-1 pc^2)^-1. A multiwavelength comparison demonstrates that the molecular gas is concentrated in a region of the galaxy that is heavily obscured in the rest-frame UV/optical. We investigate the spatially-resolved gas excitation and find that the CO(6-5)/CO(2-1) ratio is constant with radius, consistent with star formation occuring over a large portion of the disk. We discuss the implications of our results in the context of different fueling scenarios for SMGs.Comment: 15 pages, 9 figures, accepted for publication in Ap

    Constraints on Warm Dark Matter from Cosmological Reionization

    Get PDF
    We study the constraints that high-redshift structure formation in the universe places on warm dark matter (WDM) dominated cosmological models. We modify the extended Press-Schechter formalism to derive the halo mass function in WDM models. We show that our predictions agree with recent numerical simulations at low redshift over the halo masses of interest. Applying our model to galaxy formation at high redshift, we find that the loss of power on small scales, together with the delayed collapse of low-mass objects, results in strong limits on the root-mean-square velocity dispersion v_rms of the WDM particles at z=0. For fermions decoupling while relativistic, these limits are equivalent to constraints on the mass m_X of the particles. The presence of a 4 billion solar mass black hole at z=5.8, believed to power the quasar SDSS 1044-1215, implies m_X > 0.5 keV (or v_rms < 0.10 km/s), assuming that the quasar is unlensed and radiating at or below the Eddington limit. Reionization by z=5.8 also implies a limit on m_X. If high-redshift galaxies produce ionizing photons with an efficiency similar to their z=3 counterparts, we find m_X > 1.2 keV (or v_rms < 0.03 km/s). However, given the uncertainties in current measurements from the proximity effect of the ionizing background at redshift 3, values of m_X as low as 0.75 keV (v_rms = 0.06 km/s) are not ruled out. The limit weakens further if, instead, the ionizing-photon production efficiency is greater at high z, but this limit will tighten considerably if reionization is shown in the future to have occurred at higher redshifts. WDM models with m_X 0.04 km/s) produce a low-luminosity cutoff in the high-redshift galaxy luminosity function which is directly detectable with the Next Generation Space Telescope (abridged).Comment: 38 pages, 10 figures, to appear in ApJ. One figure added, some discussion revise

    The evolution of the stellar populations in low surface brightness galaxies

    Get PDF
    We investigate the star formation history and chemical evolution of low surface brightness (LSB) disk galaxies by modelling their observed spectro-photometric and chemical properties using a galactic chemical and photometric evolution model incorporating a detailed metallicity depen dent set of stellar input data. For a large fraction of the LSB galaxies in our sample, observed properties are best explained by models incorporating an exponentially decreasing global star formation rate (SFR) ending at a present-day gas fraction (M_{gas}/(M_{gas}+M_{stars}) = 0.5 for a galaxy age of 14 Gyr. For some galaxies small amplitude star formation bursts are required to explain the contribution of the young (5-50 Myr old) stellar population to the galaxy integrated luminosity. This suggests that star formation has proceeded in a stochastic manner. The presence of an old stellar population in many late-type LSB galaxies suggests that LSB galaxies roughly follow the same evolutionary history as HSB galaxies, except at a much lower rate. In particular, our results imply that LSB galaxies do not form late, nor have a delayed onset of star formation, but simply evolve slowly.Comment: To be published in A&

    HI studies of the Sculptor group galaxies. VIII. The background galaxies: NGC 24 and NGC 45

    Get PDF
    In order to complete our HI survey of galaxies in the Sculptor group area, VLA observations of NGC 24 and NGC 45 are presented. These two galaxies of similar magnitude M_B ~ -17.4 lie in the background of the Sculptor group and are low surface brightness galaxies, especially NGC 45. The HI distribution and kinematics are regular for NGC 24 while NGC 45 exhibits a kinematical twist of its major axis. A tilted-ring model shows that the position angle of the major axis changes by ~25 degrees. A best-fit model of their mass distribution gives mass-to-light ratios for the stellar disk of 2.5 and 5.2 for NGC 24 and NGC 45 respectively. These values are higher than the ones expected from stellar population synthesis models. Despite the large dark matter contribution, the galaxy mass is still dominated by the stellar component in their very inner regions. These high mass-to-light ratios are typical of what is seen in low surface brightness galaxies and may indicate that, in those galaxies, disks are far from the maximum disk case. The halo parameters derived from the best-fit models are thus lower limits.Comment: 23 pages, 10 figures, accepted for publication in The Astronomical Journa
    • …
    corecore