13 research outputs found

    Broadening the Berlin definition of ARDS to patients receiving high-flow nasal oxygen:an observational study in patients with acute hypoxemic respiratory failure due to COVID-19

    Get PDF
    BACKGROUND: High-flow nasal oxygen (HFNO) is increasingly used in patients with acute hypoxemic respiratory failure. It is uncertain whether a broadened Berlin definition of acute respiratory distress syndrome (ARDS), in which ARDS can be diagnosed in patients who are not receiving ventilation, results in similar groups of patients receiving HFNO as in patients receiving ventilation.METHODS: We applied a broadened definition of ARDS in a multicenter, observational study in adult critically ill patients with acute hypoxemic respiratory failure due to coronavirus disease 2019 (COVID-19), wherein the requirement for a minimal level of 5 cm H2O PEEP with ventilation is replaced by a minimal level of airflow rate with HFNO, and compared baseline characteristics and outcomes between patients receiving HFNO and patients receiving ventilation. The primary endpoint was ICU mortality. We also compared outcomes in risk for death groups using the PaO2/FiO2 cutoffs as used successfully in the original definition of ARDS. Secondary endpoints were hospital mortality; mortality on days 28 and 90; need for ventilation within 7 days in patients that started with HFNO; the number of days free from HFNO or ventilation; and ICU and hospital length of stay.RESULTS: Of 728 included patients, 229 patients started with HFNO and 499 patients with ventilation. All patients fulfilled the broadened Berlin definition of ARDS. Patients receiving HFNO had lower disease severity scores and lower PaO2/FiO2 than patients receiving ventilation. ICU mortality was lower in receiving HFNO (22.7 vs 35.6%; p = 0.001). Using PaO2/FiO2 cutoffs for mild, moderate and severe arterial hypoxemia created groups with an ICU mortality of 16.7%, 22.0%, and 23.5% (p = 0.906) versus 19.1%, 37.9% and 41.4% (p = 0.002), in patients receiving HFNO versus patients receiving ventilation, respectively.CONCLUSIONS: Using a broadened definition of ARDS may facilitate an earlier diagnosis of ARDS in patients receiving HFNO; however, ARDS patients receiving HFNO and ARDS patients receiving ventilation have distinct baseline characteristics and mortality rates.TRIAL REGISTRATION: The study is registered at ClinicalTrials.gov (identifier NCT04719182).</p

    Dermatologic autoimmunity associated with immune checkpoint inhibitors

    No full text
    Through a better understanding of cancer’s biology, the systemic treatment of cancer has changed significantly in the past decades by the development of immunotherapies. The most dramatic changes in patient outcome are the result of immune checkpoint inhibitors (ICI), which are currently indicated for the first- and second-line treatment of an increasing range of cancers. ICIs restore the antitumor response by modulating the regulatory pathways of the immune system; however, the desirable antitumor response can also generate undesirable immune-related adverse events (irAEs). The most affected organ is the skin, with dermatologic irAEs appearing in more than one-third of the patients. While the precise mechanisms of these irAEs are not fully understood, the inhibition of immune checkpoints and therefore the disturbance of immunologic tolerance seems to be the most likely mechanism. In this chapter, we will discuss the most common and specific dermatologic irAEs associated with ICI

    Rituximab capping triggers intracellular reorganization of B cells

    No full text
    The antibody rituximab, which binds to the protein CD20 on the surface of B-cells, has been used to treat B-cell malignancies for several years. However, the molecular mechanisms underlying this treatment are not yet fully understood. One well-established rituximab-induced mechanism, natural killer (NK) cell-mediated antibody-dependent cellular cytotoxicity (ADCC), has recently been described to involve the polarisation of bound rituximab and CD20 to one side of the B-cell. B-cells polarised this way were cleared more efficiently by NK-cells, which led us to further investigate the cellular events involved in the polarisation process. Using optical microscopy on rituximab-treated cells, we have found that the rituximab/CD20-rich, polarised side accumulated mitochondria and actin, whereas the nucleus was reorganised to the opposite side of the cell. Depleting actin via different methods correlated with a decrease in rituximab, mitochondria, and nucleus polarisation, suggesting polarisation to be actin-dependent, active process that triggers intracellular rearrangement. The influence of these intracellular rearrangements on the efficiency of NK-cell-mediated clearance of B-cell malignancies remains open for future investigation

    Pulmonary Procoagulant and Innate Immune Responses in Critically Ill COVID-19 Patients

    No full text
    Rationale: Systemic activation of procoagulant and inflammatory mechanisms has been implicated in the pathogenesis of COVID-19. Knowledge of activation of these host response pathways in the lung compartment of COVID-19 patients is limited. Objectives: To evaluate local and systemic activation of coagulation and interconnected inflammatory responses in critically ill COVID-19 patients with persistent acute respiratory distress syndrome. Methods: Paired bronchoalveolar lavage fluid and plasma samples were obtained from 17 patients with COVID-19 related persistent acute respiratory distress syndrome (mechanical ventilation > 7 days) 1 and 2 weeks after start mechanical ventilation and compared with 8 healthy controls. Thirty-four host response biomarkers stratified into five functional domains (coagulation, complement system, cytokines, chemokines and growth factors) were measured. Measurements and Main Results: In all patients, all functional domains were activated, especially in the bronchoalveolar compartment, with significantly increased levels of D-dimers, thrombin-antithrombin complexes, soluble tissue factor, C1-inhibitor antigen and activity levels, tissue type plasminogen activator, plasminogen activator inhibitor type I, soluble CD40 ligand and soluble P-selectin (coagulation), next to activation of C3bc and C4bc (complement) and multiple interrelated cytokines, chemokines and growth factors. In 10 patients in whom follow-up samples were obtained between 3 and 4 weeks after start mechanical ventilation many bronchoalveolar and plasma host response biomarkers had declined. Conclusions: Critically ill, ventilated patients with COVID-19 show strong responses relating to coagulation, the complement system, cytokines, chemokines and growth factors in the bronchoalveolar compartment. These results suggest a local pulmonary rather than a systemic procoagulant and inflammatory “storm” in severe COVID-19

    Distinct cellular immune profiles in the airways and blood of critically ill patients with COVID-19

    No full text
    Background: Knowledge of the pathophysiology of COVID-19 is almost exclusively derived from studies that examined the immune response in blood. We here aimed to analyse the pulmonary immune response during severe COVID-19 and to compare this with blood responses. Methods: This was an observational study in patients with COVID-19 admitted to the intensive care unit (ICU). Mononuclear cells were purified from bronchoalveolar lavage fluid (BALF) and blood, and analysed by spectral flow cytometry; inflammatory mediators were measured in BALF and plasma. Findings: Paired blood and BALF samples were obtained from 17 patients, four of whom died in the ICU. Macrophages and T cells were the most abundant cells in BALF, with a high percentage of T cells expressing the yδT cell receptor. In the lungs, both CD4 and CD8 T cells were predominantly effector memory cells (87·3% and 83·8%, respectively), and these cells expressed higher levels of the exhaustion marker programmad death-1 than in peripheral blood. Prolonged ICU stay (>14 days) was associated with a reduced proportion of activated T cells in peripheral blood and even more so in BALF. T cell activation in blood, but not in BALF, was higher in fatal COVID-19 cases. Increased levels of inflammatory mediators were more pronounced in BALF than in plasma. Interpretation: The bronchoalveolar immune response in COVID-19 has a unique local profile that strongly differs from the immune profile in peripheral blood. Fully elucidating COVID-19 pathophysiology will require investigation of the pulmonary immune response

    The alveolar fibroproliferative response in moderate to severe COVID-19-related acute respiratory distress syndrome and 1-yr follow-up

    No full text
    COVID-19-related acute respiratory distress syndrome (ARDS) can lead to long-term pulmonary fibrotic lesions. Alveolar fibroproliferative response (FPR) is a key factor in the development of pulmonary fibrosis. N-terminal peptide of procollagen III (NT-PCP-III) is a validated biomarker for activated FPR in ARDS. This study aimed to assess the association between dynamic changes in alveolar FPR and long-term outcomes, as well as mortality in COVID-19 ARDS patients. We conducted a prospective cohort study of 154 COVID-19 ARDS patients. We collected bronchoalveolar lavage (BAL) and blood samples for measurement of 17 pulmonary fibrosis biomarkers, including NT-PCP-III. We assessed pulmonary function and chest computed tomography (CT) at 3 and 12 mo after hospital discharge. We performed joint modeling to assess the association between longitudinal changes in biomarker levels and mortality at day 90 after starting mechanical ventilation. 154 patients with 284 BAL samples were analyzed. Of all patients, 40% survived to day 90, of whom 54 completed the follow-up procedure. A longitudinal increase in NT-PCP-III was associated with increased mortality (HR 2.89, 95% CI: 2.55-3.28; P &lt; 0.001). Forced vital capacity and diffusion for carbon monoxide were impaired at 3 mo but improved significantly at one year after hospital discharge (P = 0.03 and P = 0.004, respectively). There was no strong evidence linking alveolar FPR during hospitalization and signs of pulmonary fibrosis in pulmonary function or chest CT images during 1-yr follow-up. In COVID-19 ARDS patients, alveolar FPR during hospitalization was associated with higher mortality but not with the presence of long-term fibrotic lung sequelae within survivors.NEW &amp; NOTEWORTHY This is the first prospective study on the longitudinal alveolar fibroproliferative response in COVID-19 ARDS and its relationship with mortality and long-term follow-up. We used the largest cohort of COVID-19 ARDS patients who had consecutive bronchoalveolar lavages and measured 17 pulmonary fibroproliferative biomarkers. We found that a higher fibroproliferative response during admission was associated with increased mortality, but not correlated with long-term fibrotic lung sequelae in survivors.</p

    Correlation between Serum Biomarkers and Lung Ultrasound in COVID-19: An Observational Study

    No full text
    Serum biomarkers and lung ultrasound are important measures for prognostication and treatment allocation in patients with COVID-19. Currently, there is a paucity of studies investigating relationships between serum biomarkers and ultrasonographic biomarkers derived from lung ultrasound. This study aims to assess correlations between serum biomarkers and lung ultrasound findings. This study is a secondary analysis of four prospective observational studies in adult patients with COVID-19. Serum biomarkers included markers of epithelial injury, endothelial dysfunction and immune activation. The primary outcome was the correlation between biomarker concentrations and lung ultrasound score assessed with Pearson’s (r) or Spearman’s (rs) correlations. Forty-four patients (67 [41–88] years old, 25% female, 52% ICU patients) were included. GAS6 (rs = 0.39), CRP (rs = 0.42) and SP-D (rs = 0.36) were correlated with lung ultrasound scores. ANG-1 (rs = −0.39) was inversely correlated with lung ultrasound scores. No correlations were found between lung ultrasound score and several other serum biomarkers. In patients with COVID-19, several serum biomarkers of epithelial injury, endothelial dysfunction and immune activation correlated with lung ultrasound findings. The lack of correlations with certain biomarkers could offer opportunities for precise prognostication and targeted therapeutic interventions by integrating these unlinked biomarkers

    Effect of lung ultrasound-guided fluid deresuscitation on duration of ventilation in intensive care unit patients (CONFIDENCE): protocol for a multicentre randomised controlled trial

    No full text
    Background: Fluid therapy is a common intervention in critically ill patients. It is increasingly recognised that deresuscitation is an essential part of fluid therapy and delayed deresuscitation is associated with longer invasive ventilation and length of intensive care unit (ICU) stay. However, optimal timing and rate of deresuscitation remain unclear. Lung ultrasound (LUS) may be used to identify fluid overload. We hypothesise that daily LUS-guided deresuscitation is superior to deresuscitation without LUS in critically ill patients expected to undergo invasive ventilation for more than 24 h in terms of ventilator free-days and being alive at day 28. Methods: The “effect of lung ultrasound-guided fluid deresuscitation on duration of ventilation in intensive care unit patients” (CONFIDENCE) is a national, multicentre, open-label, randomised controlled trial (RCT) in adult critically ill patients that are expected to be invasively ventilated for at least 24 h. Patients with conditions that preclude a negative fluid balance or LUS examination are excluded. CONFIDENCE will operate in 10 ICUs in the Netherlands and enrol 1000 patients. After hemodynamic stabilisation, patients assigned to the intervention will receive daily LUS with fluid balance recommendations. Subjects in the control arm are deresuscitated at the physician’s discretion without the use of LUS. The primary endpoint is the number of ventilator-free days and being alive at day 28. Secondary endpoints include the duration of invasive ventilation; 28-day mortality; 90-day mortality; ICU, in hospital and total length of stay; cumulative fluid balance on days 1–7 after randomisation and on days 1–7 after start of LUS examination; mean serum lactate on days 1–7; the incidence of reintubations, chest drain placement, atrial fibrillation, kidney injury (KDIGO stadium ≥ 2) and hypernatremia; the use of invasive hemodynamic monitoring, and chest-X-ray; and quality of life at day 28. Discussion: The CONFIDENCE trial is the first RCT comparing the effect of LUS-guided deresuscitation to routine care in invasively ventilated ICU patients. If proven effective, LUS-guided deresuscitation could improve outcomes in some of the most vulnerable and resource-intensive patients in a manner that is non-invasive, easy to perform, and well-implementable. Trial registration: ClinicalTrials.gov NCT05188092

    Effect of lung ultrasound-guided fluid deresuscitation on duration of ventilation in intensive care unit patients (CONFIDENCE): protocol for a multicentre randomised controlled trial

    No full text
    Background: Fluid therapy is a common intervention in critically ill patients. It is increasingly recognised that deresuscitation is an essential part of fluid therapy and delayed deresuscitation is associated with longer invasive ventilation and length of intensive care unit (ICU) stay. However, optimal timing and rate of deresuscitation remain unclear. Lung ultrasound (LUS) may be used to identify fluid overload. We hypothesise that daily LUS-guided deresuscitation is superior to deresuscitation without LUS in critically ill patients expected to undergo invasive ventilation for more than 24 h in terms of ventilator free-days and being alive at day 28. Methods: The “effect of lung ultrasound-guided fluid deresuscitation on duration of ventilation in intensive care unit patients” (CONFIDENCE) is a national, multicentre, open-label, randomised controlled trial (RCT) in adult critically ill patients that are expected to be invasively ventilated for at least 24 h. Patients with conditions that preclude a negative fluid balance or LUS examination are excluded. CONFIDENCE will operate in 10 ICUs in the Netherlands and enrol 1000 patients. After hemodynamic stabilisation, patients assigned to the intervention will receive daily LUS with fluid balance recommendations. Subjects in the control arm are deresuscitated at the physician’s discretion without the use of LUS. The primary endpoint is the number of ventilator-free days and being alive at day 28. Secondary endpoints include the duration of invasive ventilation; 28-day mortality; 90-day mortality; ICU, in hospital and total length of stay; cumulative fluid balance on days 1–7 after randomisation and on days 1–7 after start of LUS examination; mean serum lactate on days 1–7; the incidence of reintubations, chest drain placement, atrial fibrillation, kidney injury (KDIGO stadium ≥ 2) and hypernatremia; the use of invasive hemodynamic monitoring, and chest-X-ray; and quality of life at day 28. Discussion: The CONFIDENCE trial is the first RCT comparing the effect of LUS-guided deresuscitation to routine care in invasively ventilated ICU patients. If proven effective, LUS-guided deresuscitation could improve outcomes in some of the most vulnerable and resource-intensive patients in a manner that is non-invasive, easy to perform, and well-implementable. Trial registration: ClinicalTrials.gov NCT05188092
    corecore