1,306 research outputs found
Molecular evolution in protobiological systems Final report, Dec. 1, 1961 - Nov. 30, 1964
Arc discharge of irradiated mixtures of simple organic and inorganic compounds for development of theory of molecular evolution in protobiological system
Heat propagation models for superconducting nanobridges at millikelvin temperatures
Nanoscale superconducting quantum interference devices (nanoSQUIDs) most commonly use Dayem bridges as Josephson elements to reduce the loop size and achieve high spin sensitivity. Except at temperatures close to the critical temperature T c, the electrical characteristics of these bridges exhibit undesirable thermal hysteresis which complicates device operation. This makes proper thermal analysis an essential design consideration for optimising nanoSQUID performance at ultralow temperatures. However the existing theoretical models for this hysteresis were developed for micron-scale devices operating close to liquid helium temperatures, and are not fully applicable to a new generation of much smaller devices operating at significantly lower temperatures. We have therefore developed a new analytic heat model which enables a more accurate prediction of the thermal behaviour in such circumstances. We demonstrate that this model is in good agreement with experimental results measured down to 100 mK and discuss its validity for different nanoSQUID geometries
Influence of relative NK-DC abundance on placentation and its relation to epigenetic programming in the offspring
Normal placentation relies on an efficient maternal adaptation to pregnancy. Within the decidua, natural killer (NK) cells and dendritic cells (DC) have a critical role in modulating angiogenesis and decidualization associated with pregnancy. However, the contribution of these immune cells to the placentation process and subsequently fetal development remains largely elusive. Using two different mouse models, we here show that optimal placentation and fetal development is sensitive to disturbances in NK cell relative abundance at the fetal–maternal interface. Depletion of NK cells during early gestation compromises the placentation process by causing alteration in placental function and structure. Embryos derived from NK-depleted dams suffer from intrauterine growth restriction (IUGR), a phenomenon that continued to be evident in the offspring on post-natal day 4. Further, we demonstrate that IUGR was accompanied by an overall reduction of global DNA methylation levels and epigenetic changes in the methylation of specific hepatic gene promoters. Thus, temporary changes within the NK cell pool during early gestation influence placental development and function, subsequently affecting hepatic gene methylation and fetal metabolism.Fil: Freitag, Nancy. Medicine University of Berlin; AlemaniaFil: Zwier, M. V.. University of Groningen; PaĂses BajosFil: Barrientos, Gabriela Laura. Medicine University of Berlin; Alemania. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; ArgentinaFil: Tirado González, Irene. Medicine University of Berlin; AlemaniaFil: Conrad, Melanie L.. Medicine University of Berlin; AlemaniaFil: Rose, Matthias. Medicine University of Berlin; AlemaniaFil: Scherjon, S. A.. University of Groningen; PaĂses BajosFil: Plösch, T.. University of Groningen; PaĂses BajosFil: Blois, Sandra M.. Medicine University of Berlin; Alemani
Pore-Scale Dynamics of Liquid CO\u3csub\u3e2\u3c/sub\u3e–Water Displacement in 2D Axisymmetric Porous Micromodels Under Strong Drainage and Weak Imbibition Conditions: High-Speed μPIV Measurements
Resolving pore-scale transient flow dynamics is crucial to understanding the physics underlying multiphase flow in porous media and informing large-scale predictive models. Surface properties of the porous matrix play an important role in controlling such physics, yet interfacial mechanisms remain poorly understood, in part due to a lack of direct observations. This study reports on an experimental investigation of the pore-scale flow dynamics of liquid CO2 and water in two-dimensional (2D) circular porous micromodels with different surface characteristics employing high-speed microscopic particle image velocimetry (ÎĽPIV). The design of the micromodel minimized side boundary effects due to the limited size of the domain. The high-speed ÎĽPIV technique resolved the spatial and temporal dynamics of multiphase flow of CO2 and water under reservoir-relevant conditions, for both drainage and imbibition scenarios. When CO2 displaced water in a hydrophilic micromodel (i.e., drainage), unstable capillary fingering occurred and the pore flow was dominated by successive pore-scale burst events (i.e., Haines jumps). When the same experiment was repeated in a nearly neutral wetting micromodel (i.e., weak imbibition), flow instability and fluctuations were virtually eliminated, leading to a more compact displacement pattern. Energy balance analysis indicates that the conversion efficiency between surface energy and external work is less than 30%, and that kinetic energy is a disproportionately smaller contributor to the energy budget. This is true even during a Haines jump event, which induces velocities typically two orders of magnitude higher than the bulk velocity. These novel measurements further enabled direct observations of the meniscus displacement, revealing a significant alteration of the pore filling mechanisms during drainage and imbibition. While the former typically featured burst events, which often occur only at one of the several throats connecting a pore, the latter is typically dominated by a cooperative filling mechanism involving simultaneous invasion of a pore from multiple throats. This cooperative filling mechanism leads to merging of two interfaces and releases surface energy, causing instantaneous high-speed events that are similar, yet fundamentally different from, burst events. Finally, pore-scale velocity fields were statistically analyzed to provide a quantitative measure of the role of capillary effects in these pore flows
DNA-PKcs inhibitors sensitize neuroendocrine tumor cells to peptide receptor radionuclide therapy <i>in vitro</i> and <i>in vivo</i>
Background: Peptide receptor radionuclide therapy (PRRT) increases progression-free survival and quality of life of neuroendocrine tumor (NET) patients, however complete cures are rare and dose-limiting toxicity has been reported. PRRT induces DNA damage of which DNA double strand breaks (DSBs) are the most cytotoxic. DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is a key player in DSB repair and its inhibition therefore is a potential way to enhance PRRT efficacy without increasing the dosage. Methods: We analyzed effects of combining PRRT and DNA-PKcs inhibitor AZD7648 on viability, cell death and clonogenic survival on SSTR2-expressing cell lines BON1-SSTR2, GOT1 and NCI-H69. Therapy-induced DNA damage response was assessed by analyzing DSB foci levels and cell cycle distributions. In vivo efficacy was investigated in BON1-SSTR2 and NCI-H69 xenografted mice and hematologic and renal toxicity were monitored by blood counts, creatinine levels and analyzing renal morphology. Results: Combining PRRT and AZD7648 significantly decreased viability of BON1-SSTR2, GOT1 and NCI-H69 cells and induced cell death in GOT1 and BON1-SSTR2 cells. A strong effect of AZD7648 on PRRT-induced DSB repair was found. In GOT1 cells, this was accompanied by induction of cell cycle blocks. However, BON1-SSTR2 cells were unable to fully arrest their cell cycle and polyploid cells with high DNA damage levels were detected. In vivo, AZD7648 significantly sensitized BON1-SSTR2 and NCI-H69 xenograft models to PRRT. In addition, combination therapy did not induce significant changes in body weight, blood composition, plasma creatinine levels and renal morphology, indicating the absence of severe acute hematologic and renal toxicity. Conclusion: These results highlight that the potentiation of the therapeutic effect of PRRT by DNA-PKcs inhibition is a highly effective and well-Tolerated therapeutic strategy. Based on our findings, we recommend initiation of phase I/II studies in patients to find a safe and effective combination regimen.</p
Investigation of Factors Determining the Enhanced Permeability and Retention Effect in Subcutaneous Xenografts
Liposomal chemotherapy offers several advantages over conventional therapies, including high intratumoral drug delivery, reduced side effects, prolonged circulation time and the possibility to dose higher. The efficient delivery of liposomal chemotherapeutics relies however on the enhanced permeability and retention (EPR) effect, which refers to the ability of macromolecules to extravasate leaky tumor vessels and accumulate in the tumor tissue. Using a panel of human xenograft tumors, we evaluated the influence of the EPR effect on liposomal distribution in vivo by injection of pegylated liposomes radiolabeled with 111In. Liposomal accumulation in tumors and organs was followed over time by SPECT/CT imaging. We observed that fast growing xenografts, which may be less representative of tumor development in patients, showed higher liposomal accumulation as compared to slow growing xenografts. Additionally, several other parameters determining the EPR effect were evaluated, such as blood and lymphatic vessel density, intratumoral hypoxia, and the presence of macrophages. The investigation of various parameters showed a few correlations. Although hypoxia, proliferation and macrophage presence were associated with tumor growth, no hard conclusions or predictions could be made regarding the EPR effect or liposomal uptake. However liposomal uptake was
Placental glycoredox dysregulation associated with disease progression in an animal model of superimposed preeclampsia
Pregnancies carried by women with chronic hypertension are at increased risk of superimposed preeclampsia, but the placental pathways involved in disease progression remain poorly understood. In this study, we used the stroke-prone spontaneously hypertensive rat (SHRSP) model to investigate the placental mechanisms promoting superimposed preeclampsia, with focus on cellular stress and its influence on galectin–glycan circuits. Our analysis revealed that SHRSP placentas are characterized by a sustained activation of the cellular stress response, displaying significantly increased levels of markers of lipid peroxidation (i.e., thiobarbituric acid reactive substances (TBARS)) and protein nitration and defective antioxidant enzyme expression as early as gestation day 14 (which marks disease onset). Further, lectin profiling showed that such redox imbalance was associated with marked alterations of the placental glycocode, including a prominent decrease of core 1 O-glycan expression in trophoblasts and increased decidual levels of sialylation in SHRSP placentas. We also observed significant changes in the expression of galectins 1, 3 and 9 with pregnancy progression, highlighting the important role of the galectin signature as dynamic interpreters of placental microenvironmental challenges. Collectively, our findings uncover a new role for the glycoredox balance in the pathogenesis of superimposed preeclampsia representing a promising target for interventions in hypertensive disorders of pregnancy
Measurement of reaction kinetics of [177Lu]Lu-DOTA-TATE using a microfluidic system
Microfluidic synthesis techniques can offer improvement over batch syntheses which are currently used for radiopharmaceutical production. These improvements are, for example, better mixing of reactants, more efficient energy transfer, less radiolysis, faster reaction optimization, and overall improved reaction control. However, scale-up challenges hinder the routine clinical use, so the main advantage is currently the ability to optimize reactions rapidly and with low reactant consumption. Translating those results to clinical systems could be done based on calculations, if kinetic constants and diffusion coefficients were known. This study describes a microfluidic system with which it was possible to determine the kinetic association rate constants for the formation of [177Lu]Lu-DOTA-TATE under conditions currently used for clinical production. The kinetic rate constants showed a temperature dependence that followed the Arrhenius equation, allowing the determination of Arrhenius parameters for a Lu-DOTA conjugate (A = 1.24 ± 0.05 × 1019 M-1 s-1, EA = 109.5 ± 0.1 × 103 J mol-1) for the first time. The required reaction time for the formation of [177Lu]Lu-DOTA-TATE (99% yield) at 80 °C was 44 s in a microfluidic channel (100 μm). Simulations done with COMSOL Multiphysics® indicated that processing clinical amounts (3 mL reaction solution) in less than 12 min is possible in a micro- or milli-fluidic system, if the diameter of the reaction channel is increased to over 500 μm. These results show that a continuous, microfluidic system can become a viable alternative to the conventional, batch-wise radiolabelling technique
ELMOD3-SH2D6 gene fusion as a possible co-star actor in autism spectrum disorder scenario
Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders characterized by high heritability. It is known that genetic factors contribute to ASD pathogenesis. In particular, copy number variants (CNVs) are involved in ASD susceptibility and can affect gene expression regulation. 2p11.2 microdeletions encompassing ELMOD3, CAPG and SH2D6 genes have been described in four unrelated ASD families. The present study revealed that this microdeletion is responsible for the production of a chimeric transcript generated from the fusion between ELMOD3 and SH2D6. The identified transcript showed significantly higher expression levels in subjects carrying the deletion compared to control subjects, suggesting that it is not subjected to nonsense-mediated decay and might encode for a chimeric protein. In conclusion, this study suggests the possible involvement of this gene fusion, together with the other previously identified variants, in ASD
Early expression of pregnancy-specific glycoprotein 22 (PSG22) by trophoblast cells modulates angiogenesis in mice.
Mouse and human pregnancy-specific glycoproteins (PSG) are known to exert immunomodulatory functions during pregnancy by inducing maternal leukocytes to secrete anti-inflammatory cytokines that promote a tolerogenic decidual microenvironment. Many such anti-inflammatory mediators also function as proangiogenic factors, which, along with the reported association of murine PSG with the uterine vasculature, suggest that PSG may contribute to the vascular adaptations necessary for successful implantation and placental development. We observed that PSG22 is strongly expressed around the embryonic crypt on Gestation Day 5.5, indicating that trophoblast giant cells are the main source of PSG22 during the early stages of pregnancy. PSG22 treatment up-regulated the secretion of transforming growth factor beta 1 and vascular endothelial growth factor A (VEGFA) in murine macrophages, uterine dendritic cells, and natural killer cells. A possible role of PSGs in uteroplacental angiogenesis is further supported by the finding that incubation of endothelial cells with PSG22 resulted in the formation of tubes in the presence and absence of VEGFA. We determined that PSG22, like human PSG1 and murine PSG17 and PSG23, binds to the heparan sulfate chains in syndecans. Therefore, our findings indicate that despite the independent evolution and expansion of human and rodent PSG, members in both families have conserved functions that include their ability to induce anti-inflammatory cytokines and proangiogenic factors as well as to induce the formation of capillary structures by endothelial cells. In summary, our results indicate that PSG22, the most abundant PSG expressed during mouse early pregnancy, is likely a major contributor to the establishment of a successful pregnancy.Fil: Blois, Sandra M.. University Medicine of Berlin; AlemaniaFil: Tirado González, Irene. University Medicine of Berlin; AlemaniaFil: Wu, Julie. Uniformed Services University of the Health Sciences; Estados UnidosFil: Barrientos, Gabriela Laura. University Medicine of Berlin; Alemania. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; ArgentinaFil: Johnson, Briana. Uniformed Services University of the Health Sciences; Estados UnidosFil: Warren, James. Uniformed Services University of the Health Sciences; Estados UnidosFil: Freitag, Nancy. University Medicine of Berlin; AlemaniaFil: Klapp, Burghard F.. University Medicine of Berlin; AlemaniaFil: Irmak, Ster. University of Duisburg Essen; AlemaniaFil: Ergun, Suleyman. Julius Maximilians Universitat Wurzburg. Biozentrum; AlemaniaFil: Dveskler, Gabriela S.. Uniformed Services University of the Health Sciences; Estados Unido
- …