1 research outputs found

    The averaged characteristic polynomial for the Gaussian and chiral Gaussian ensembles with a source

    Full text link
    In classical random matrix theory the Gaussian and chiral Gaussian random matrix models with a source are realized as shifted mean Gaussian, and chiral Gaussian, random matrices with real (β=1)(\beta = 1), complex (β=2)\beta = 2) and real quaternion (β=4(\beta = 4) elements. We use the Dyson Brownian motion model to give a meaning for general β>0\beta > 0. In the Gaussian case a further construction valid for β>0\beta > 0 is given, as the eigenvalue PDF of a recursively defined random matrix ensemble. In the case of real or complex elements, a combinatorial argument is used to compute the averaged characteristic polynomial. The resulting functional forms are shown to be a special cases of duality formulas due to Desrosiers. New derivations of the general case of Desrosiers' dualities are given. A soft edge scaling limit of the averaged characteristic polynomial is identified, and an explicit evaluation in terms of so-called incomplete Airy functions is obtained.Comment: 21 page
    corecore