1 research outputs found
The averaged characteristic polynomial for the Gaussian and chiral Gaussian ensembles with a source
In classical random matrix theory the Gaussian and chiral Gaussian random
matrix models with a source are realized as shifted mean Gaussian, and chiral
Gaussian, random matrices with real , complex ( and
real quaternion ) elements. We use the Dyson Brownian motion model
to give a meaning for general . In the Gaussian case a further
construction valid for is given, as the eigenvalue PDF of a
recursively defined random matrix ensemble. In the case of real or complex
elements, a combinatorial argument is used to compute the averaged
characteristic polynomial. The resulting functional forms are shown to be a
special cases of duality formulas due to Desrosiers. New derivations of the
general case of Desrosiers' dualities are given. A soft edge scaling limit of
the averaged characteristic polynomial is identified, and an explicit
evaluation in terms of so-called incomplete Airy functions is obtained.Comment: 21 page