8 research outputs found

    The lipid-lowering effects of lomitapide are unaffected by adjunctive apheresis in patients with homozygous familial hypercholesterolaemia - A post-hoc analysis of a Phase 3, single-arm, open-label trial

    Get PDF
    Objectives: Lomitapide (a microsomal triglyceride transfer protein inhibitor) is an adjunctive treatment for homozygous familial hypercholesterolaemia (HoFH), a rare genetic condition characterised by elevated low-density lipoprotein-cholesterol (LDL-C), and premature, severe, accelerated atherosclerosis. Standard of care for HoFH includes lipid-lowering drugs and lipoprotein apheresis. We conducted a post-hoc analysis using data from a Phase 3 study to assess whether concomitant apheresis affected the lipid-lowering efficacy of lomitapide. Methods: Existing lipid-lowering therapy, including apheresis, was to remain stable from Week-6 to Week 26. Lomitapide dose was escalated on the basis of individual safety/tolerability from 5mg to 60mg a day (maximum). The primary endpoint was mean percent change in LDL-C from baseline to Week 26 (efficacy phase), after which patients remained on lomitapide through Week 78 for safety assessment and further evaluation of efficacy. During this latter period, apheresis could be adjusted. We analysed the impact of apheresis on LDL-C reductions in patients receiving lomitapide. Results: Of the 29 patients that entered the efficacy phase, 18 (62%) were receiving apheresis at baseline. Twenty-three patients (13 receiving apheresis) completed the Week 26 evaluation. Of the six patients who discontinued in the first 26 weeks, five were receiving apheresis. There were no significant differences in percent change from baseline of LDL-C at Week 26 in patients treated (-48%) and not treated (-55%) with apheresis (p=0.545). Changes in Lp(a) levels were modest and not different between groups (p=0.436). Conclusion: The LDL-C lowering efficacy of lomitapide is unaffected by lipoprotein apheresis

    Linseed essential oil - source of lipids as active ingredients for pharmaceuticals and nutraceuticals

    No full text
    Linseed - also known as flaxseed - is known for its beneficial effects on animal health attributed to its composition. Linseed comprises linoleic and ?-linolenic fatty acids, various dietary fibers and lignans, which are beneficial to health because they reduce the risk of cardiovascular diseases, as well as cancer, decreasing the levels of cholesterol and relaxing the smooth muscle cells in arteries increasing the blood flow. Essential fatty acids from flax participate in several metabolic processes of the cell, not only as structuring components of the cell membrane but also as storage lipids. Flax, being considered a functional food, can be consumed in a variety of ways, including seeds, oil or flour, contributing to basic nutrition. Several formulations containing flax are available on the market in the form of e.g. capsules and microencapsulated powders having potential as nutraceuticals. This paper revises the different lipid classes found in flaxseeds and their genomics. It also discusses the beneficial effects of flax and flaxseed oil and their biological advantages as ingredients in pharmaceuticals and in nutraceuticals products.The authors wish to acknowledge the financial support from the Portuguese Science and Technology Foundation, Ministry of Science and Education (FCT/MEC) through national funds, and co-financed by FEDER, under the Partnership Agreement PT2020 for the project M-ERA-NET/0004/2015-PAIRED.info:eu-repo/semantics/publishedVersio

    Fibers and Prevention of Cardiovascular Disease

    No full text
    corecore