3 research outputs found
Treatment of Peritoneal Carcinomatosis by Targeted Delivery of the Radio-Labeled Tumor Homing Peptide 213Bi-DTPA-[F3]2 into the Nucleus of Tumor Cells
BACKGROUND: Alpha-particle emitting isotopes are effective novel tools in cancer therapy, but targeted delivery into tumors is a prerequisite of their application to avoid toxic side effects. Peritoneal carcinomatosis is a widespread dissemination of tumors throughout the peritoneal cavity. As peritoneal carcinomatosis is fatal in most cases, novel therapies are needed. F3 is a tumor homing peptide which is internalized into the nucleus of tumor cells upon binding to nucleolin on the cell surface. Therefore, F3 may be an appropriate carrier for alpha-particle emitting isotopes facilitating selective tumor therapies. PRINCIPAL FINDINGS: A dimer of the vascular tumor homing peptide F3 was chemically coupled to the alpha-emitter (213)Bi ((213)Bi-DTPA-[F3](2)). We found (213)Bi-DTPA-[F3](2) to accumulate in the nucleus of tumor cells in vitro and in intraperitoneally growing tumors in vivo. To study the anti-tumor activity of (213)Bi-DTPA-[F3](2) we treated mice bearing intraperitoneally growing xenograft tumors with (213)Bi-DTPA-[F3](2). In a tumor prevention study between the days 4-14 after inoculation of tumor cells 6x1.85 MBq (50 microCi) of (213)Bi-DTPA-[F3](2) were injected. In a tumor reduction study between the days 16-26 after inoculation of tumor cells 6x1.85 MBq of (213)Bi-DTPA-[F3](2) were injected. The survival time of the animals was increased from 51 to 93.5 days in the prevention study and from 57 days to 78 days in the tumor reduction study. No toxicity of the treatment was observed. In bio-distribution studies we found (213)Bi-DTPA-[F3](2) to accumulate in tumors but only low activities were found in control organs except for the kidneys, where (213)Bi-DTPA-[F3](2) is found due to renal excretion. CONCLUSIONS/SIGNIFICANCE: In conclusion we report that (213)Bi-DTPA-[F3](2) is a novel tool for the targeted delivery of alpha-emitters into the nucleus of tumor cells that effectively controls peritoneal carcinomatosis in preclinical models and may also be useful in oncology
Simultaneous detection of L-glutamate and nitric oxide from adherently growing cells at known distance using disk shaped dual electrodes
An ex vivo system for simultaneous detection of nitric oxide (NO) and L-glutamate using integrated dual 250 gin platinum disk electrodes modified individually with suitable sensing chemistries has been developed. One of the sensors was coated with an electrocatalytic layer of Ni tetrasulfonate phthalocyanine tetrasodium salt (Ni-TSPe) covered by second layer of Nation, which stabilises on the one hand the primary oxidation product NO+ and prevents interferences from negatively charged compounds such as NO2-. For glutamate determination, the second electrode was modified with a crosslinked redox hydrogel consisting of Os complex modified poly(vinylimidazol), glutamate oxidase and peroxidase. A manual x-y-z micromanipulator on top of an inverted optical microscope was used to position the dual electrode sensor at a defined distance of 5 mu m from a cell population under visual control. C6 glioma cells were stimulated simultaneously with bradykinin or VEGF to release NO while KCl was used to invoke glutamate release. For evaluation of the glutamate sensors, in some experiments HN10 cells were used. To investigate the sensitivity and reliability of the system, several drugs were applied to the cells, e.g. Ca2+-channel inhibitors for testing Ca2+-dependence of the release of NO and glutamate, rotenone for inducing oxidative stress and glutamate antagonists for analysing glutamate release. With these drugs the NO and glutamate release was modulated in a similar way then expected from previously described systems or even in-vivo measurements. We therefore conclude that our system is suitable to analyse stress-induced mechanisms in cell lines. (c) 2006 Elsevier B.V All rights reserved