4,828 research outputs found

    Chemical Abundances of Planetary Nebulae in the Sagittarius Dwarf Elliptical Galaxy

    Get PDF
    Spectrophotometry and imaging of the two planetary nebulae He2-436 and Wray16-423, recently discovered to be in the Sagittarius dwarf elliptical galaxy, are presented. Wray16-423 is a high excitation planetary nebula (PN) with a hot central star. In contrast He2-436 is a high density PN with a cooler central star and evidence of local dust, the extinction exceeding that for Wray16-423 by E(B-V)=0.28. The extinction to Wray16-423, (E(B-V)=0.14), is consistent with the extinction to the Sagittarius (Sgr) Dwarf. Both PN show Wolf-Rayet features in their spectra, although the lines are weak in Wray16-423. Images in [O III] and H-alpha+[N II], although affected by poor seeing, yield a diameter of 1.2'' for Wray16-423 after deconvolution; He~2-436 was unresolved. He2-436 has a luminosity about twice that of Wray16-423 and its size and high density suggest a younger PN. In order to reconcile the differing luminosity and nebular properties of the two PN with similar age progenitor stars, it is suggested that they are on He burning tracks The abundance pattern is very similar in both nebulae and shows an oxygen depletion of -0.4 dex with respect to the mean O abundance of Galactic PN and [O/H] = -0.6. The Sgr PN progenitor stars are representative of the higher metallicity tail of the Sgr population. The pattern of abundance depletion is similar to that in the only other PN in a dwarf galaxy companion of the Milky Way, that in Fornax, for which new spectra are presented. However the abundances are larger than for Galactic halo PN suggesting a later formation age. The O abundance of the Sgr galaxy deduced from its PN, shows similarities with that of dwarf ellipticals around M31, suggesting that this galaxy was a dwarf elliptical before its interaction with the Milky Way.Comment: 24 pages, Latex (aas2pp4.sty) including 5 postscript figures. To appear in Ap

    Exploring Halo Substructure with Giant Stars. VI. Extended Distributions of Giant Stars Around the Carina Dwarf Spheroidal Galaxy -- How Reliable Are They?

    Full text link
    The question of the existence of active tidal disruption around various dSph galaxies remains controversial. That debate often centers on the nature (bound vs. unbound) of extended populations of stars. However, the more fundamental issue of the very existence of the extended populations is still contentious. We present an evaluation of the debate centering on one particular dSph, Carina, for which claims both for and against the existence of stars beyond the King radius have been made. Our review includes an examination of all previous studies bearing on the Carina radial profile and shows that the survey method which achieves the highest detected dSph signal-to-background in the outer parts of the galaxy is the Washington M, T2 + DDO51 (MTD) filter approach from Paper II in this series. We then address statistical methods used to evaluate the reliability of MTD surveys in the presence of photometric errors and for which a new, a posteriori statistical analysis methodology is provided. Finally, these statistical methods are tested by new spectroscopy of stars in the MTD-selected Carina candidate sample. Of 74 candidate giants with follow-up spectroscopy, the MTD technique identified 61 new Carina members, including 8 stars outside the King radius. From a sample of 29 stars not initially identified as candidate Carina giants but that lie just outside of our selection criteria, 12 have radial velocities consistent with membership, including 5 extratidal stars. Carina is shown to have an extended population of giant stars extending to a major axis radius of 40' (1.44x the nominal King radius).Comment: 56 pages, 10 figures. Submitted to the Astronomical Journal, 2004 Sep 2

    HST/NICMOS Imaging Polarimetry of Proto-Planetary Nebulae: Probing of the Dust Shell Structure via Polarized Light

    Full text link
    Using NICMOS on HST, we have performed imaging polarimetry of proto-planetary nebulae. Our objective is to study the structure of optically thin circumstellar shells of post-asymptotic giant branch stars by separating dust-scattered, linearly polarized star light from unpolarized direct star light. This unique technique allows us to probe faint reflection nebulae around the bright central star, which can be buried under the point-spread-function of the central star in conventional imaging. Our observations and archival search have yielded polarimetric images for five sources: IRAS 07134+1005 (HD 56126), IRAS 06530-0213, IRAS 04296+3429, IRAS (Z)02229+6208, and IRAS 16594-4656. These images have revealed the circumstellar dust distribution in an unprecedented detail via polarized intensity maps, providing a basis to understand the 3-D structure of these dust shells. We have observationally confirmed the presence of the inner cavity caused by the cessation of AGB mass loss and the internal shell structures which is strongly tied to the progenitor star's mass loss history on the AGB. We have also found that equatorial enhancement in these circumstellar shells comes with various degrees of contrast, suggesting a range of optical depths in these optically thin shells. Our data support the interpretation that the dichotomy of PPN morphologies is due primarily to differences in optical depth and secondary to the inclination effect. The polarization maps reveal a range of inclination angles for these optically thin reflection nebulae, dispelling the notion that elliptical nebulae are pole-on bipolar nebulae.Comment: 17 pages in emulateapj format, 12 figures. To be published in the March 2005 issue of The Astronomical Journa

    A New Way to Detect Massive Black Holes in Galaxies: The Stellar Remnants of Tidal Disruption

    Get PDF
    We point out that the tidal disruption of a giant may leave a luminous (10^35-10^39 ergs/s), hot (10-100 eV) stellar core. The ``supersoft'' source detected by Chandra at the center of M31 may be such a core; whether or not it is, the observations have shown that such a core is detectable, even in the center of a galaxy. We therefore explore the range of expected observational signatures and how they may be used to (1) test the hypothesis that the M31 source is a remnant of tidal stripping and (2) discover evidence of black holes and disruption events in other galaxies.Comment: Four pages with 1 figure. Appeared in ApJL (2001, 551, L37

    Confirmation of SBS 1150+599A As An Extremely Metal-Poor Planetary Nebula

    Full text link
    SBS 1150+599A is a blue stellar object at high galactic latitude discovered in the Second Byurakan Survey. New high-resolution images of SBS 1150+599A are presented, demonstrating that it is very likely to be an old planetary nebula in the galactic halo, as suggested by Tovmassian et al (2001). An H-alpha image taken with the WIYN 3.5-m telescope and its "tip/tilt" module reveals the diameter of the nebula to be 9.2", comparable to that estimated from spectra by Tovmassian et al. Lower limits to the central star temperature were derived using the Zanstra hydrogen and helium methods to determine that the star's effective temperature must be > 68,000K and that the nebula is optically thin. New spectra from the MMT and FLWO telescopes are presented, revealing the presence of strong [Ne V] lambda 3425, indicating that the central star temperature must be > 100,000K. With the revised diameter, new central star temperature, and an improved central star luminosity, we can constrain photoionization models for the nebula significantly better than before. Because the emission-line data set is sparse, the models are still not conclusive. Nevertheless, we confirm that this nebula is an extremely metal-poor planetary nebula, having a value for O/H that is less than 1/100 solar, and possibly as low as 1/500 solar.Comment: 19 pages, 6 figures. Accepted for publication in the Astronomical Journa

    The Element Abundances in Bare Planetary Nebula Central Stars and the Shell Burning in AGB Stars

    Full text link
    We review the observed properties of extremely hot hydrogen-deficient post-AGB stars of spectral type [WC] and PG1159. Their H-deficiency is probably caused by a (very) late helium-shell flash or a AGB final thermal pulse, laying bare interior stellar regions which are usually kept hidden below the hydrogen envelope. Thus, the photospheric element abundances of these stars allow to draw conclusions about details of nuclear burning and mixing processes in the precursor AGB stars. We summarize the state-of-the-art of stellar evolution models which simulate AGB evolution and the occurrence of a late He-shell flash. We compare predicted element abundances to those determined by quantitative spectral analyses performed with advanced non-LTE model atmospheres. A good qualitative and quantitative agreement is found. Future work can contribute to an even more complete picture of the nuclear processes in AGB stars.Comment: Review, accepted for publication in PASP, Febr. 06 issue. For high resolution versions of Figures 1 and 6 see preprint on http://astro.uni-tuebingen.de/publications/paper_05_05.shtm

    The dynamical evolution of the circumstellar gas around low-and intermediate-mass stars I: the AGB

    Get PDF
    We have investigated the dynamical interaction of low- and-intermediate mass stars (from 1 to 5 Msun) with their interstellar medium (ISM). In this first paper, we examine the structures generated by the stellar winds during the Asymptotic Giant Branch (AGB) phase, using a numerical code and the wind history predicted by stellar evolution. The influence of the external ISM is also taken into account. We find that the wind variations associated with the thermal pulses lead to the formation of transient shells with an average lifetime of 20,000 yr, and consequently do not remain recorded in the density or velocity structure of the gas. The formation of shells that survive at the end of the AGB occurs via two main processes: shocks between the shells formed by two consecutive enhancements of the mass-loss or via continuous accumulation of the material ejected by the star in the interaction region with the ISM. Our models show that the mass of the circumstellar envelope increases appreciably due to the ISM material swept up by the wind (up to 70 % for the 1 Msun stellar model). We also point out the importance of the ISM on the deceleration and compression of the external shells. According to our simulations, large regions (up to 2.5 pc) of neutral gas surrounding the molecular envelopes of AGB stars are expected. These large regions of gas are formed from the mass-loss experienced by the star during the AGB evolution.Comment: 43 pages, 15 figures. Accepted for publication in the Astrophysical Journa

    A single sub-km Kuiper Belt object from a stellar Occultation in archival data

    Get PDF
    The Kuiper belt is a remnant of the primordial Solar System. Measurements of its size distribution constrain its accretion and collisional history, and the importance of material strength of Kuiper belt objects (KBOs). Small, sub-km sized, KBOs elude direct detection, but the signature of their occultations of background stars should be detectable. Observations at both optical and X-ray wavelengths claim to have detected such occultations, but their implied KBO abundances are inconsistent with each other and far exceed theoretical expectations. Here, we report an analysis of archival data that reveals an occultation by a body with a 500 m radius at a distance of 45 AU. The probability of this event to occur due to random statistical fluctuations within our data set is about 2%. Our survey yields a surface density of KBOs with radii larger than 250 m of 2.1^{+4.8}_{-1.7} x 10^7 deg^{-2}, ruling out inferred surface densities from previous claimed detections by more than 5 sigma. The fact that we detected only one event, firmly shows a deficit of sub-km sized KBOs compared to a population extrapolated from objects with r>50 km. This implies that sub-km sized KBOs are undergoing collisional erosion, just like debris disks observed around other stars.Comment: To appear in Nature on December 17, 2009. Under press embargo until 1800 hours London time on 16 December. 19 pages; 7 figure

    The UV Upturn in Elliptical Galaxies as an Age Indicator

    Full text link
    We show that the UV flux of old stellar systems can tell us about their ages. Two independent populations synthesis groups that have had wildly different views have here worked together and generated two solutions that can be easily tested using space telescopes. Proposed tests will constrain the ages of giant Es, that are often considered the oldest populations in the universe, and thus cosmology.Comment: LaTeX and 11 eps figures Accepted for publication in Ap

    HST Snapshot Survey of Post-AGB Objects

    Full text link
    The results from a Hubble Space Telescope (HST) snapshot survey of post-AGB objects are shown. The aim of the survey is to complement existing HST images of PPN and to connect various types of nebulosities with physical and chemical properties of their central stars. Nebulosities are detected in 15 of 33 sources. Images and photometric and geometric measurements are presented. For sources with nebulosities we see a morphological bifurcation into two groups, DUPLEX and SOLE, as previous studies have found. We find further support to the previous results suggesting that this dichotomy is caused by a difference in optical thickness of the dust shell. The remaining 18 sources are classified as stellar post-AGB objects, because our observations indicate a lack of nebulosity. We show that some stellar sources may in fact be DUPLEX or SOLE based on their infrared colors. The cause of the differences among the groups are investigated. We discuss some evidence suggesting that high progenitor-mass AGB stars tend to become DUPLEX post-AGB objects. Intermediate progenitor-mass AGB stars tend to be SOLE post-AGB objects. Most of the stellar sources probably have low mass progenitors and do not seem to develop nebulosities during the post-AGB phase and therefore do not become planetary nebulae.Comment: 21 pages, 11 figure
    • 

    corecore