6,882 research outputs found
Spitzer/MIPS Imaging of NGC 650: Probing the History of Mass Loss on the Asymptotic Giant Branch
We present the far-infrared (IR) maps of a bipolar planetary nebula (PN), NGC
650, at 24, 70, and 160 micron taken with the Multiband Imaging Photometer for
Spitzer (MIPS) on-board the Spitzer Space Telescope. While the two-peak
emission structure seen in all MIPS bands suggests the presence of a near
edge-on dusty torus, the distinct emission structure between the 24 micron map
and the 70/160 micron maps indicates the presence of two distinct emission
components in the central torus. Based on the spatial correlation of these two
far-IR emission components with respect to various optical line emission, we
conclude that the 24 micron emission is largely due to the [O IV] line at 25.9
micron arising from highly ionized regions behind the ionization front, whereas
the 70 and 160 micron emission is due to dust continuum arising from
low-temperature dust in the remnant asymptotic giant branch (AGB) wind shell.
The far-IR nebula structure also suggests that the enhancement of mass loss at
the end of the AGB phase has occurred isotropically, but has ensued only in the
equatorial directions while ceasing in the polar directions. The present data
also show evidence for the prolate spheroidal distribution of matter in this
bipolar PN. The AGB mass loss history reconstructed in this PN is thus
consistent with what has been previously proposed based on the past optical and
mid-IR imaging surveys of the post-AGB shells.Comment: 9 pages in the emulated ApJ format with 6 figures, to appear in Ap
Buddy
My most unforgetable character is a Polish forced laborer that my platoon picked up near Leipzig, Germany. I was not long in finding out that we had quite a character on our hands.
First of all, I had better tell you how we acquired Buddy, as our friend came to be known. Who gave him the name, I don\u27t know, but he seemed to respond to it so well, we let it stick
The Circumstellar Extinction of Planetary Nebulae
We analyze the dependence of circumstellar extinction on core mass for the
brightest planetary nebulae (PNe) in the Magellanic Clouds and M31. We show
that in all three galaxies, a statistically significant correlation exists
between the two quantities, such that high core mass objects have greater
extinction. We model this behavior, and show that the relation is a simple
consequence of the greater mass loss and faster evolution times of high mass
stars. The relation is important because it provides a natural explanation for
the invariance of the [O III] 5007 planetary nebula luminosity function (PNLF)
with population age: bright Population I PNe are extinguished below the cutoff
of the PNLF. It also explains the counter-intuitive observation that
intrinsically luminous Population I PNe often appear fainter than PNe from
older, low-mass progenitors.Comment: 12 pages, 2 figures, accepted for ApJ, April 10, 199
The Environments around Long-Duration Gamma-Ray Burst Progenitors
Gamma-ray burst (GRB) afterglow observations have allowed us to significantly
constrain the engines producing these energetic explosions. Te redshift and
position information provided by these afterglows have already allowed us to
limit the progenitors of GRBs to only a few models. The afterglows may also
provide another observation that can place further constraints on the GRB
progenitor: measurements telling us about the environments surrounding GRBs.
Current analyses of GRB afterglows suggest that roughly half of long-duration
gamma-ray bursts occur in surroundings with density profiles that are uniform.
We study the constraints placed by this observation on both the classic
``collapsar'' massive star progenitor and its relative, the ``helium-merger''
progenitor. We study several aspects of wind mass-loss and find that our
modifications to the standard Wolf-Rayet mass-loss paradigm are not sufficient
to produce constant density profiles. Although this does not rule out the
standard ``collapsar'' progenitor, it does suggest a deficiency with this
model. We then focus on the He-merger models and find that such progenitors can
fit this particular constraint well. We show how detailed observations can not
only determine the correct progenitor for GRBs, but also allow us to study
binary evolution physics.Comment: 44 pages including 11 figure
Defining the Termination of the Asymptotic Giant Branch
I suggest a theoretical quantitative definition for the termination of the
asymptotic giant branch (AGB) phase and the beginning of the post-AGB phase. I
suggest that the transition will be taken to occur when the ratio of the
dynamical time scale to the the envelope thermal time scale, Q, reaches its
maximum value. Time average values are used for the different quantities, as
the criterion does not refer to the short time-scale variations occurring on
the AGB and post-AGB, e.g., thermal pulses (helium shell flashes) and magnetic
activity. Along the entire AGB the value of Q increases, even when the star
starts to contract. Only when a rapid contraction starts does the value of Q
start to decrease. This criterion captures the essence of the transition from
the AGB to the post AGB phase, because Q is connected to the stellar effective
temperature, reaching its maximum value at T~4000-6000 K, it is related to the
mass loss properties, and it reaches its maximum value when rapid contraction
starts and envelope mass is very low.Comment: Submitted to ApJ Letter
Star-to-star Na and O abundance variations along the red giant branch in NGC 2808
We report for the first time Na and O abundances from high-resolution, high
S/N echelle spectra of 20 red giants in NGC 2808, taken as part of the Science
Verification program of the FLAMES multi-object spectrograph at the ESO VLT. In
these stars, spanning about 3 mag from the red giant branch (RGB) tip, large
variations are detected in the abundances of oxygen and sodium, anticorrelated
with each other; this is a well known evidence of proton-capture reactions at
high temperatures in the ON and NeNa cycles. One star appears super O-poor; if
the extension of the Na-O anticorrelation is confirmed, NGC 2808 might reach O
depletion levels as large as those of M 13. This result confirms our previous
findings based on lower resolution spectra (Carretta et al. 2003) of a large
star-to-star scatter in proton capture elements at all positions along the RGB
in NGC 2808, with no significant evolutionary contribution. Finally, the
average metallicity for NGC 2808 is [Fe/H]= -1.14 +/- 0.01 dex (rms=0.06) from
19 stars.Comment: 12 pages, 3 figures, accepted for publication in ApJ Letter
A Possible Hidden Population of Spherical Planetary Nebulae
We argue that relative to non-spherical planetary nebulae (PNs), spherical
PNs are about an order of magnitude less likely to be detected, at distances of
several kiloparsecs. Noting the structure similarity of halos around
non-spherical PNs to that of observed spherical PNs, we assume that most
unobserved spherical PNs are also similar in structure to the spherical halos
around non-spherical PNs. The fraction of non-spherical PNs with detected
spherical halos around them, taken from a recent study, leads us to the claim
of a large (relative to that of non-spherical PNs) hidden population of
spherical PNs in the visible band. Building a toy model for the luminosity
evolution of PNs, we show that the claimed detection fraction of spherical PNs
based on halos around non-spherical PNs, is compatible with observational
sensitivities. We use this result to update earlier studies on the different PN
shaping routes in the binary model. We estimate that ~30% of all PNs are
spherical, namely, their progenitors did not interact with any binary
companion. This fraction is to be compared with the ~3% fraction of observed
spherical PNs among all observed PNs. From all PNs, ~15% owe their moderate
elliptical shape to the interaction of their progenitors with planets, while
\~55% of all PNs owe their elliptical or bipolar shapes to the interaction of
their progenitors with stellar companions.Comment: AJ, in pres
The Evolution of NGC 7027 at Radio Frequencies: A New Determination of the Distance and Core Mass
We present the results of a 25-year program to monitor the radio flux
evolution of the planetary nebula NGC7027. We find significant evolution of the
spectral flux densities. The flux density at 1465 MHz, where the nebula is
optically thick, is increasing at a rate of 0.251+-0.015 % per year, caused by
the expansion of the ionized nebula. At frequencies where the emission is
optically thin, the spectral flux density is changing at a rate of
-0.145+-0.005 % per year, caused by a decrease in the number of ionizing
photons coming from the central star. A distance of 980+-100 pc is derived. By
fitting interpolated models of post-AGB evolution to the observed changes, we
find that over the 25-yr monitoring period, the stellar temperature has
increased by 3900+-900 K and the stellar bolometric luminosity has decreased by
1.75+-0.38 %. We derive a distance-independent stellar mass of 0.655+-0.01
solar masses adopting the Bloecker stellar evolution models, or about 0.04
solar masses higher when using models of Vassiliadis & Wood which may provide a
better fit. A Cloudy photoionization model is used to fit all epochs at all
frequencies simultaneously. The differences between the radio flux density
predictions and the observed values show some time-independent residuals of
typically 1 %. A possible explanation is inaccuracies in the radio flux scale
of Baars et al. We propose an adjustment to the flux density scale of the
primary radio flux calibrator 3C286, based on the Cloudy model of NGC7027. We
also calculate precise flux densities for NGC7027 for all standard continuum
bands used at the VLA, as well as for some new 30GHz experiments.Comment: submitted to the Astrophysical Journa
Chemical Abundances of Planetary Nebulae in the Sagittarius Dwarf Elliptical Galaxy
Spectrophotometry and imaging of the two planetary nebulae He2-436 and
Wray16-423, recently discovered to be in the Sagittarius dwarf elliptical
galaxy, are presented. Wray16-423 is a high excitation planetary nebula (PN)
with a hot central star. In contrast He2-436 is a high density PN with a cooler
central star and evidence of local dust, the extinction exceeding that for
Wray16-423 by E(B-V)=0.28. The extinction to Wray16-423, (E(B-V)=0.14), is
consistent with the extinction to the Sagittarius (Sgr) Dwarf. Both PN show
Wolf-Rayet features in their spectra, although the lines are weak in
Wray16-423. Images in [O III] and H-alpha+[N II], although affected by poor
seeing, yield a diameter of 1.2'' for Wray16-423 after deconvolution; He~2-436
was unresolved. He2-436 has a luminosity about twice that of Wray16-423 and its
size and high density suggest a younger PN. In order to reconcile the differing
luminosity and nebular properties of the two PN with similar age progenitor
stars, it is suggested that they are on He burning tracks
The abundance pattern is very similar in both nebulae and shows an oxygen
depletion of -0.4 dex with respect to the mean O abundance of Galactic PN and
[O/H] = -0.6. The Sgr PN progenitor stars are representative of the higher
metallicity tail of the Sgr population. The pattern of abundance depletion is
similar to that in the only other PN in a dwarf galaxy companion of the Milky
Way, that in Fornax, for which new spectra are presented. However the
abundances are larger than for Galactic halo PN suggesting a later formation
age. The O abundance of the Sgr galaxy deduced from its PN, shows similarities
with that of dwarf ellipticals around M31, suggesting that this galaxy was a
dwarf elliptical before its interaction with the Milky Way.Comment: 24 pages, Latex (aas2pp4.sty) including 5 postscript figures. To
appear in Ap
Stellar Hydrodynamics in Radiative Regions
We present an analysis of the response of a radiative region to waves
generated by a convective region of the star; this wave treatment of the
classical problem of ``overshooting'' gives extra mixing relative to the
treatment traditionally used in stellar evolutionary codes. The interface
between convectively stable and unstable regions is dynamic and nonspherical,
so that the nonturbulent material is driven into motion, even in the absence of
``penetrative overshoot.'' These motions may be described by the theory of
nonspherical stellar pulsations, and are related to motion measured by
helioseismology. Multi-dimensional numerical simulations of convective flow
show puzzling features which we explain by this simplified physical model.
Gravity waves generated at the interface are dissipated, resulting in slow
circulation and mixing seen outside the formal convection zone. The approach
may be extended to deal with rotation and composition gradients. Tests of this
description in the stellar evolution code TYCHO produce carbon stars on the
asymptotic giant branch (AGB), an isochrone age for the Hyades and three young
clusters with lithium depletion ages from brown dwarfs, and lithium and
beryllium depletion consistent with observations of the Hyades and Pleiades,
all without tuning parameters. The insight into the different contributions of
rotational and hydrodynamic mixing processes could have important implications
for realistic simulation of supernovae and other questions in stellar
evolution.Comment: 27 pages, 5 figures, accepted to the Astrophysical Journa
- …