58 research outputs found

    Nutritional upgrading for omnivorous carpenter ants by the endosymbiont Blochmannia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Carpenter ants (genus <it>Camponotus</it>) are considered to be omnivores. Nonetheless, the genome sequence of <it>Blochmannia floridanus</it>, the obligate intracellular endosymbiont of <it>Camponotus floridanus</it>, suggests a function in nutritional upgrading of host resources by the bacterium. Thus, the strongly reduced genome of the endosymbiont retains genes for all subunits of a functional urease, as well as those for biosynthetic pathways for all but one (arginine) of the amino acids essential to the host.</p> <p>Results</p> <p>Nutritional upgrading by <it>Blochmannia </it>was tested in 90-day feeding experiments with brood-raising in worker-groups on chemically defined diets with and without essential amino acids and treated or not with antibiotics. Control groups were fed with cockroaches, honey water and Bhatkar agar. Worker-groups were provided with brood collected from the queenright mother-colonies (45 eggs and 45 first instar larvae each). Brood production did not differ significantly between groups of symbiotic workers on diets with and without essential amino acids. However, aposymbiotic worker groups raised significantly less brood on a diet lacking essential amino acids. Reduced brood production by aposymbiotic workers was compensated when those groups were provided with essential amino acids in their diet. Decrease of endosymbionts due to treatment with antibiotic was monitored by qRT-PCR and FISH after the 90-day experimental period. Urease function was confirmed by feeding experiments using <sup>15</sup>N-labelled urea. GC-MS analysis of <sup>15</sup>N-enrichment of free amino acids in workers revealed significant labelling of the non-essential amino acids alanine, glycine, aspartic acid, and glutamic acid, as well as of the essential amino acids methionine and phenylalanine.</p> <p>Conclusion</p> <p>Our results show that endosymbiotic <it>Blochmannia </it>nutritionally upgrade the diet of <it>C. floridanus </it>hosts to provide essential amino acids, and that it may also play a role in nitrogen recycling via its functional urease. <it>Blochmannia </it>may confer a significant fitness advantage via nutritional upgrading by enhancing competitive ability of <it>Camponotus </it>with other ant species lacking such an endosymbiont. Domestication of the endosymbiont may have facilitated the evolutionary success of the genus <it>Camponotus</it>.</p

    Evolutionary Convergence and Nitrogen Metabolism in Blattabacterium strain Bge, Primary Endosymbiont of the Cockroach Blattella germanica

    Get PDF
    Bacterial endosymbionts of insects play a central role in upgrading the diet of their hosts. In certain cases, such as aphids and tsetse flies, endosymbionts complement the metabolic capacity of hosts living on nutrient-deficient diets, while the bacteria harbored by omnivorous carpenter ants are involved in nitrogen recycling. In this study, we describe the genome sequence and inferred metabolism of Blattabacterium strain Bge, the primary Flavobacteria endosymbiont of the omnivorous German cockroach Blattella germanica. Through comparative genomics with other insect endosymbionts and free-living Flavobacteria we reveal that Blattabacterium strain Bge shares the same distribution of functional gene categories only with Blochmannia strains, the primary Gamma-Proteobacteria endosymbiont of carpenter ants. This is a remarkable example of evolutionary convergence during the symbiotic process, involving very distant phylogenetic bacterial taxa within hosts feeding on similar diets. Despite this similarity, different nitrogen economy strategies have emerged in each case. Both bacterial endosymbionts code for urease but display different metabolic functions: Blochmannia strains produce ammonia from dietary urea and then use it as a source of nitrogen, whereas Blattabacterium strain Bge codes for the complete urea cycle that, in combination with urease, produces ammonia as an end product. Not only does the cockroach endosymbiont play an essential role in nutrient supply to the host, but also in the catabolic use of amino acids and nitrogen excretion, as strongly suggested by the stoichiometric analysis of the inferred metabolic network. Here, we explain the metabolic reasons underlying the enigmatic return of cockroaches to the ancestral ammonotelic state

    On Some British Larval Trematodes from Terrestrial Hosts

    No full text

    Size, shape and the distribution of organic matter in the Recent Antarctic brachiopod Liothyrella uva

    No full text
    The living terebratulid articulate brachiopod Liothyrella uva (Jackson 1912) was sampled from a shallow water population at Signy Island, South Orkney Islands, Antarctica. Neither shell height nor shell breadth were directly proportional to length and as a result there was a change in shell shape with size (and hence age); this change was small but statistically significant. The proportion of the total organic matter found in the shell and internal (mantle) tissues also changed with size. In small (5–7 mm length) brachiopods 70–80% of the total organic matter was located within the shell; this fraction decreased with increasing size until above about 25 mm length the proportion of organic matter in the shell was constant at 30–45%. Variability in this measure was influenced by infection with endolithic red algae. Punctal density was independent of size with a mean value of 95.7 per mm2 [SE (standard error) ± 2.2], which was greater than in populations sampled from higher latitudes. With increasing shell length there was a slight increase in the size of puncta close to the shell edge. In all morphometric measures the range of variation observed was similar to that described from populations of Liothyrella from other areas of the Southern Ocean
    • …
    corecore