1,205 research outputs found
HI Imaging of LGS 3 and an Apparently Interacting High-Velocity Cloud
We present a 93' by 93' map of the area near the Local Group dwarf galaxy LGS
3, centered on an HI cloud 30' away from the galaxy. Previous authors
associated this cloud with LGS 3 but relied on observations made with a 36'
beam. Our high-resolution (3.4'), wide-field Arecibo observations of the region
reveal that the HI cloud is distinct from the galaxy and suggest an interaction
between the two. We point out faint emission features in the map that may be
gas that has been tidally removed from the HI cloud by LGS 3. We also derive
the rotation curve of the cloud and find that it is in solid-body rotation out
to a radius of 10', beyond which the rotation velocity begins to decline.
Assuming a spherical geometry for the cloud, the implied mass is 2.8 x 10^7
(d/Mpc) M_{Sun}, where d is the distance in Mpc. The observed HI mass is 5.5 x
10^6 (d/Mpc)^2 M_{Sun}, implying that the cloud is dark-matter dominated unless
its distance is at least 1.9 Mpc. We propose that the cloud is a high-velocity
cloud that is undergoing a tidal interaction with LGS 3 and therefore is
located roughly 700 kpc away from the Milky Way. The cloud then contains a
total mass of ~2.0 x 10^7 M_{Sun}, 82% of which consists of dark matter.Comment: 5 pages, 2 color figures. Accepted for publication in ApJ Letter
Tightly Correlated HI and FUV Emission in the Outskirts of M83
We compare sensitive HI data from The HI Nearby Galaxy Survey (THINGS) and
deep far UV (FUV) data from GALEX in the outer disk of M83. The FUV and HI maps
show a stunning spatial correlation out to almost 4 optical radii (r25),
roughly the extent of our maps. This underscores that HI traces the gas
reservoir for outer disk star formation and it implies that massive (at least
low level) star formation proceeds almost everywhere HI is observed. Whereas
the average FUV intensity decreases steadily with increasing radius before
leveling off at ~1.7 r25, the decline in HI surface density is more subtle. Low
HI columns (<2 M_solar/pc^2) contribute most of the mass in the outer disk,
which is not the case within r25. The time for star formation to consume the
available HI, inferred from the ratio of HI to FUV intensity, rises with
increasing radius before leveling off at ~100 Gyr, i.e., many Hubble times,
near ~1.7 r25. Assuming the relatively short H2 depletion times observed in the
inner parts of galaxies hold in outer disks, the conversion of HI into bound,
molecular clouds seems to limit star formation in outer galaxy disks. The long
consumption times suggest that most of the extended HI observed in M83 will not
be consumed by in situ star formation. However, even these low star formation
rates are enough to expect moderate chemical enrichment in a closed outer disk.Comment: Accepted for Publication in ApJ
Use of sedation to relieve refractory symptoms in dying patients
Objectives. To document the use of sedation for refractory symptoms in patients admitted to an independent palliative care unit.Method. A prospective descriptive study.Setting. The 7-bed inpatient unit at Sungardens Hospice, Pretoria.Subjects. Patients who required sedation for refractory symptoms in addition to normal palliative care treatment between January and June 2002.Findings. Twenty of 100 consecutive patients admitted required sedation. All had advanced cancer. Their mean age was 68 years. Thirty-six per cent were men and 64% women.Indications. Agitated delirium was the most common reason (45%) for using sedation, followed by intractable vomiting due to inoperable malignant intestinal obstruction in 25% of patients. Three patients with persistent convulsions or myoclonic jerking and 2 patients with severe refractory dyspnoea required some sedation. Intractable pain was the main reason for sedation in only 1 patient.Survival. Mean survival following the start of sedation was 92 hours/3.8 days (range 6 - 369 hours/0.25 - 19.4 days). The combined mean survival recorded in 9 other studies was 57 hours/2.4 days (range 36 - 93.6 hours/1.5 - 3.9 days).Medication. The main drugs used for sedation were midazolam and haloperidol. The mean dosage for midazolam was 18.5 mg/24 hours (range 7.5 - 40 mg) and for haloperidol 8 mg/24 hours (range 5 - 10 mg). For pain relief the mean daily dose of parenteral morphine was 76 mg (range 15 - 260 mg).Conclusion. Use of sedation for the relief of refractory symptoms at Sungardens Hospice is in line with several studies reported in the international literature
The Distances of SNR W41 and overlapping HII regions
New HI images from the VLA Galactic Plane Survey show prominent absorption
features associated with the supernovae remnant G23.3-0.3 (SNR W41). We
highlight the HI absorption spectra and the CO emission spectra of eight
small regions on the face of W41, including four HII regions, three non-thermal
emission regions and one unclassified region. The maximum velocity of
absorption for W41 is 782 km/s and the CO cloud at radial velocity
955 km/s is behind W41. Because an extended TeV source, a diffuse X-ray
enhancement and a large molecular cloud at radial velocity 775 km/s are
also projected at the center of W41, these yield the kinematic distance of 3.9
to 4.5 kpc for W41. For HII regions, our analyses reveal that both G23.42-0.21
and G23.07+0.25 are at the far kinematic distances (9.9 kpc and
10.6 kpc respectively) of their recombination-line velocities (1030.5 km/s
and 89.62.1 km/s respectively), G23.07-0.37 is at the near kinematic
distance (4.40.3 kpc) of its recombination-line velocity (82.72.0
km/s), and G23.27-0.27 is probably at the near kinematic distance (4.10.3
kpc) of its recombination-line velocity (76.10.6 km/s).Comment: 11 pages, 3 figs., 2 tables, accepted by A
A Magellanic Origin for the Warp of the Galaxy
We show that a Magellanic Cloud origin for the warp of the Milky Way can
explain most quantitative features of the outer HI layer recently identified by
Levine, Blitz & Heiles (2005). We construct a model similar to that of Weinberg
(1998) that produces distortions in the dark matter halo, and we calculate the
combined effect of these dark-halo distortions and the direct tidal forcing by
the Magellanic Clouds on the disk warp in the linear regime. The interaction of
the dark matter halo with the disk and resonances between the orbit of the
Clouds and the disk account for the large amplitudes observed for the vertical
m=0,1,2 harmonics. The observations lead to six constraints on warp forcing
mechanisms and our model reasonably approximates all six. The disk is shown to
be very dynamic, constantly changing its shape as the Clouds proceed along
their orbit. We discuss the challenges to MOND placed by the observations.Comment: 4 pages, 3 figures, submitted to ApJ Letters. Additional graphics, 3d
visualizations and movies available at
http://www.astro.umass.edu/~weinberg/lm
The EGNoG Survey: Gas Excitation in Normal Galaxies at z~0.3
As observations of molecular gas in galaxies are pushed to lower star
formation rate galaxies at higher redshifts, it is becoming increasingly
important to understand the conditions of the gas in these systems to properly
infer their molecular gas content. The rotational transitions of the carbon
monoxide (CO) molecule provide an excellent probe of the gas excitation
conditions in these galaxies. In this paper we present the results from the gas
excitation sample of the Evolution of molecular Gas in Normal Galaxies (EGNoG)
survey at the Combined Array for Research in Millimeter-wave Astronomy (CARMA).
This subset of the full EGNoG sample consists of four galaxies at z~0.3 with
star formation rates of 40-65 M_Sun yr^-1 and stellar masses of ~2x10^11 M_Sun.
Using the 3 mm and 1 mm bands at CARMA, we observe both the CO(1-0) and CO(3-2)
transitions in these four galaxies in order to probe the excitation of the
molecular gas. We report robust detections of both lines in three galaxies (and
an upper limit on the fourth), with an average line ratio, r_31 = L'_CO(3-2) /
L'_CO(1-0), of 0.46 \pm 0.07 (with systematic errors \lesssim 40%), which
implies sub-thermal excitation of the CO(3-2) line. We conclude that the
excitation of the gas in these massive, highly star-forming galaxies is
consistent with normal star-forming galaxies such as local spirals, not
starbursting systems like local ultra-luminous infrared galaxies. Since the
EGNoG gas excitation sample galaxies are selected from the main sequence of
star-forming galaxies, we suggest that this result is applicable to studies of
main sequence galaxies at intermediate and high redshifts, supporting the
assumptions made in studies that find molecular gas fractions in star forming
galaxies at z~1-2 to be an order of magnitude larger than what is observed
locally.Comment: Accepted for publication in the Astrophysical Journal, to appear
January 2013; 18 pages, 10 figures, 6 table
A new instrument for time-resolved measurement of HO2 radicals
OH and HO2 radicals are closely coupled in the atmospheric oxidation and combustion of volatile organic compounds (VOCs). Simultaneous measurement of HO2 yields and OH kinetics can provide the ability to assign site-specific rate coefficients that are important for understanding the oxidation mechanisms of VOCs. By coupling a fluorescence assay by gaseous expansion (FAGE) laser-induced fluorescence (LIF) detection system for OH and HO2 with a high-pressure laser flash photolysis system, it is possible to accurately measure OH pseudo-1st-order loss processes up to ∼100 000 s−1 and to determine HO2 yields via time-resolved measurements. This time resolution allows discrimination between primary HO2 from the target reaction and secondary production from side reactions. The apparatus was characterized by measuring yields from the reactions of OH with H2O2 (1:1 link between OH and HO2), with C2H4∕O2 (where secondary chemistry can generate HO2), with C2H6∕O2 (where there should be zero HO2 yield), and with CH3OH∕O2 (where there is a well-defined HO2 yield).
As an application of the new instrument, the reaction of OH with n-butanol has been studied at 293 and 616 K. The bimolecular rate coefficient at 293 K, (9.24±0.21)×10−12 cm3 molec.−1 s−1, is in good agreement with recent literature, verifying that this instrument can measure accurate OH kinetics. At 616 K the regeneration of OH in the absence of O2, from the decomposition of the β-hydroxy radical, was observed, which allowed the determination of the fraction of OH reacting at the β site (0.23±0.04). Direct observation of the HO2 product in the presence of oxygen has allowed the assignment of the α-branching fractions (0.57±0.06) at 293 K and (0.54±0.04) at 616 K, again in good agreement with recent literature; branching ratios are key to modelling the ignition delay times of this potential “drop-in” biofuel
- …