50 research outputs found

    Stability of Negative Image Equilibria in Spike-Timing Dependent Plasticity

    Full text link
    We investigate the stability of negative image equilibria in mean synaptic weight dynamics governed by spike-timing dependent plasticity (STDP). The neural architecture of the model is based on the electrosensory lateral line lobe (ELL) of mormyrid electric fish, which forms a negative image of the reafferent signal from the fish's own electric discharge to optimize detection of external electric fields. We derive a necessary and sufficient condition for stability, for arbitrary postsynaptic potential functions and arbitrary learning rules. We then apply the general result to several examples of biological interest.Comment: 13 pages, revtex4; uses packages: graphicx, subfigure; 9 figures, 16 subfigure

    Effects of sleep deprivation on neural functioning: an integrative review

    Get PDF
    Sleep deprivation has a broad variety of effects on human performance and neural functioning that manifest themselves at different levels of description. On a macroscopic level, sleep deprivation mainly affects executive functions, especially in novel tasks. Macroscopic and mesoscopic effects of sleep deprivation on brain activity include reduced cortical responsiveness to incoming stimuli, reflecting reduced attention. On a microscopic level, sleep deprivation is associated with increased levels of adenosine, a neuromodulator that has a general inhibitory effect on neural activity. The inhibition of cholinergic nuclei appears particularly relevant, as the associated decrease in cortical acetylcholine seems to cause effects of sleep deprivation on macroscopic brain activity. In general, however, the relationships between the neural effects of sleep deprivation across observation scales are poorly understood and uncovering these relationships should be a primary target in future research

    Long-term synaptic morphometry changes after induction of long-term potentiation and long-term depression in the dentate gyrus of awake rats are not simply mirror phenomena

    No full text
    Mechanisms of expression of long-term synaptic plasticity are believed to involve morphological changes of the activated synapses and remodelling of connectivity. Here, we investigated changes in synaptic and neuronal parameters in the dentate gyrus 24 h after induction of long-term potentiation (LTP) and long-term depression (LTD) in awake rats. In dentate granule cells, tetanization of the medial or lateral perforant paths induces LTP in specific synaptic bands along the dendrites in the middle and outer molecular layers, respectively, and tetanization of the lateral path induces robust LTD heterosynaptically in the middle molecular layer. This functional segregation allowed us to assess morphological changes associated with LTP and LTD in each pathway in the same population of neurons. Electron microscopy and unbiased counting methods were used to estimate neuronal density, axospinous, axodendritic and perforated synapse density, multiple synapse bouton density and postsynaptic density (PSD) area. Whereas there was no change in neuronal density, PSD area and multiple synapse boutons 24 h after either LTP or LTD, there was a noninput-specific increase in unperforated axospinous synapses after both LTP and LTD. However, we found that LTP of the medial, but not lateral, perforant path is associated with a specific increase in perforated axospinous synapses in the potentiated area. We also show that heterosynaptic LTD is associated with an input-specific increase in axodendritic synapse density. These results suggest that each perforant pathway may differ with respect to the nature of LTP-induced long-term changes and show that morphologically LTD is not simply the converse of LTP
    corecore