89 research outputs found

    Serial subtraction by sevens significantly alters limb knee adduction during lateral step-down when compared to the Stroop color-word test

    Get PDF
    "Dual tasking pairs movement and cognitive tasks to simulate real-world movement conditions. Dual tasking can lead to increased injury risk while performing dynamic lower limb movements. Bilateral asymmetry in neuromuscular control is suggested to play a role in the risk for lower limb injuries. Lower limb dominance influences motor control."--Introduction

    Exercise, Neuroprotective Exerkines, and Parkinson’s Disease: A Narrative Review

    Get PDF
    Parkinson’s disease (PD) is a prevalent neurodegenerative disease in which treatment often includes an exercise regimen. Exercise is neuroprotective in animal models of PD, and, more recently, human clinical studies have verified exercise’s disease-modifying effect. Aerobic exercise and resistance training improve many of PD’s motor and non-motor symptoms, while neuromotor therapy and stretching/flexibility exercises positively contribute to the quality of life in people with PD. Therefore, understanding the role of exercise in managing this complex disorder is crucial. Exerkines are bioactive substances that are synthesized and released during exercise and have been implicated in several positive health outcomes, including neuroprotection. Exerkines protect neuronal cells in vitro and rodent PD models in vivo. Aerobic exercise and resistance training both increase exerkine levels in the blood, suggesting a role for exerkines in the neuroprotective theory. Many exerkines demonstrate the potential for protecting the brain against pathological missteps caused by PD. Every person (people) with Parkinson’s (PwP) needs a comprehensive exercise plan tailored to their unique needs and abilities. Here, we provide an exercise template to help PwP understand the importance of exercise for treating PD, describe barriers confronting many PwP in their attempt to exercise, provide suggestions for overcoming these barriers, and explore the role of exerkines in managing PD. In conclusion, exercise and exerkines together create a powerful neuroprotective system that should contribute to slowing the chronic progression of PD

    Getting our ducks in a row:The need for data utility comparisons of healthcare systems data for clinical trials

    Get PDF
    BACKGROUND: Better use of healthcare systems data, collected as part of interactions between patients and the healthcare system, could transform planning and conduct of randomised controlled trials. Multiple challenges to widespread use include whether healthcare systems data captures sufficiently well the data traditionally captured on case report forms. "Data Utility Comparison Studies" (DUCkS) assess the utility of healthcare systems data for RCTs by comparison to data collected by the trial. Despite their importance, there are few published UK examples of DUCkS.METHODS-AND-RESULTS: Building from ongoing and selected recent examples of UK-led DUCkS in the literature, we set out experience-based considerations for the conduct of future DUCkS. Developed through informal iterative discussions in many forums, considerations are offered for planning, protocol development, data, analysis and reporting, with comparisons at "patient-level" or "trial-level", depending on the item of interest and trial status.DISCUSSION: DUCkS could be a valuable tool in assessing where healthcare systems data can be used for trials and in which trial teams can play a leading role. There is a pressing need for trials to be more efficient in their delivery and research waste must be reduced. Trials have been making inconsistent use of healthcare systems data, not least because of an absence of evidence of utility. DUCkS can also help to identify challenges in using healthcare systems data, such as linkage (access and timing) and data quality. We encourage trial teams to incorporate and report DUCkS in trials and funders and data providers to support them.</p

    Getting our ducks in a row: The need for data utility comparisons of healthcare systems data for clinical trials

    Get PDF
    Background: Better use of healthcare systems data, collected as part of interactions between patients and the healthcare system, could transform planning and conduct of randomised controlled trials. Multiple challenges to widespread use include whether healthcare systems data captures sufficiently well the data traditionally captured on case report forms. “Data Utility Comparison Studies” (DUCkS) assess the utility of healthcare systems data for RCTs by comparison to data collected by the trial. Despite their importance, there are few published UK examples of DUCkS. // Methods-and-Results: Building from ongoing and selected recent examples of UK-led DUCkS in the literature, we set out experience-based considerations for the conduct of future DUCkS. Developed through informal iterative discussions in many forums, considerations are offered for planning, protocol development, data, analysis and reporting, with comparisons at “patient-level” or “trial-level”, depending on the item of interest and trial status. // Discussion: DUCkS could be a valuable tool in assessing where healthcare systems data can be used for trials and in which trial teams can play a leading role. There is a pressing need for trials to be more efficient in their delivery and research waste must be reduced. Trials have been making inconsistent use of healthcare systems data, not least because of an absence of evidence of utility. DUCkS can also help to identify challenges in using healthcare systems data, such as linkage (access and timing) and data quality. We encourage trial teams to incorporate and report DUCkS in trials and funders and data providers to support them

    Getting our ducks in a row:The need for data utility comparisons of healthcare systems data for clinical trials

    Get PDF
    BACKGROUND: Better use of healthcare systems data, collected as part of interactions between patients and the healthcare system, could transform planning and conduct of randomised controlled trials. Multiple challenges to widespread use include whether healthcare systems data captures sufficiently well the data traditionally captured on case report forms. "Data Utility Comparison Studies" (DUCkS) assess the utility of healthcare systems data for RCTs by comparison to data collected by the trial. Despite their importance, there are few published UK examples of DUCkS.METHODS-AND-RESULTS: Building from ongoing and selected recent examples of UK-led DUCkS in the literature, we set out experience-based considerations for the conduct of future DUCkS. Developed through informal iterative discussions in many forums, considerations are offered for planning, protocol development, data, analysis and reporting, with comparisons at "patient-level" or "trial-level", depending on the item of interest and trial status.DISCUSSION: DUCkS could be a valuable tool in assessing where healthcare systems data can be used for trials and in which trial teams can play a leading role. There is a pressing need for trials to be more efficient in their delivery and research waste must be reduced. Trials have been making inconsistent use of healthcare systems data, not least because of an absence of evidence of utility. DUCkS can also help to identify challenges in using healthcare systems data, such as linkage (access and timing) and data quality. We encourage trial teams to incorporate and report DUCkS in trials and funders and data providers to support them.</p

    Genomic profile of advanced breast cancer in circulating tumour DNA.

    Get PDF
    The genomics of advanced breast cancer (ABC) has been described through tumour tissue biopsy sequencing, although these approaches are limited by geographical and temporal heterogeneity. Here we use plasma circulating tumour DNA sequencing to interrogate the genomic profile of ABC in 800 patients in the plasmaMATCH trial. We demonstrate diverse subclonal resistance mutations, including enrichment of HER2 mutations in HER2 positive disease, co-occurring ESR1 and MAP kinase pathway mutations in HR + HER2- disease that associate with poor overall survival (p = 0.0092), and multiple PIK3CA mutations in HR + disease that associate with short progression free survival on fulvestrant (p = 0.0036). The fraction of cancer with a mutation, the clonal dominance of a mutation, varied between genes, and within hotspot mutations of ESR1 and PIK3CA. In ER-positive breast cancer subclonal mutations were enriched in an APOBEC mutational signature, with second hit PIK3CA mutations acquired subclonally and at sites characteristic of APOBEC mutagenesis. This study utilises circulating tumour DNA analysis in a large clinical trial to demonstrate the subclonal diversification of pre-treated advanced breast cancer, identifying distinct mutational processes in advanced ER-positive breast cancer, and novel therapeutic opportunities

    Circulating tumour DNA analysis to direct therapy in advanced breast cancer (plasmaMATCH): a multicentre, multicohort, phase 2a, platform trial.

    Get PDF
    BACKGROUND: Circulating tumour DNA (ctDNA) testing might provide a current assessment of the genomic profile of advanced cancer, without the need to repeat tumour biopsy. We aimed to assess the accuracy of ctDNA testing in advanced breast cancer and the ability of ctDNA testing to select patients for mutation-directed therapy. METHODS: We did an open-label, multicohort, phase 2a, platform trial of ctDNA testing in 18 UK hospitals. Participants were women (aged ≥18 years) with histologically confirmed advanced breast cancer and an Eastern Cooperative Oncology Group performance status 0-2. Patients had completed at least one previous line of treatment for advanced breast cancer or relapsed within 12 months of neoadjuvant or adjuvant chemotherapy. Patients were recruited into four parallel treatment cohorts matched to mutations identified in ctDNA: cohort A comprised patients with ESR1 mutations (treated with intramuscular extended-dose fulvestrant 500 mg); cohort B comprised patients with HER2 mutations (treated with oral neratinib 240 mg, and if oestrogen receptor-positive with intramuscular standard-dose fulvestrant); cohort C comprised patients with AKT1 mutations and oestrogen receptor-positive cancer (treated with oral capivasertib 400 mg plus intramuscular standard-dose fulvestrant); and cohort D comprised patients with AKT1 mutations and oestrogen receptor-negative cancer or PTEN mutation (treated with oral capivasertib 480 mg). Each cohort had a primary endpoint of confirmed objective response rate. For cohort A, 13 or more responses among 78 evaluable patients were required to infer activity and three or more among 16 were required for cohorts B, C, and D. Recruitment to all cohorts is complete and long-term follow-up is ongoing. This trial is registered with ClinicalTrials.gov, NCT03182634; the European Clinical Trials database, EudraCT2015-003735-36; and the ISRCTN registry, ISRCTN16945804. FINDINGS: Between Dec 21, 2016, and April 26, 2019, 1051 patients registered for the study, with ctDNA results available for 1034 patients. Agreement between ctDNA digital PCR and targeted sequencing was 96-99% (n=800, kappa 0·89-0·93). Sensitivity of digital PCR ctDNA testing for mutations identified in tissue sequencing was 93% (95% CI 83-98) overall and 98% (87-100) with contemporaneous biopsies. In all cohorts, combined median follow-up was 14·4 months (IQR 7·0-23·7). Cohorts B and C met or exceeded the target number of responses, with five (25% [95% CI 9-49]) of 20 patients in cohort B and four (22% [6-48]) of 18 patients in cohort C having a response. Cohorts A and D did not reach the target number of responses, with six (8% [95% CI 3-17]) of 74 in cohort A and two (11% [1-33]) of 19 patients in cohort D having a response. The most common grade 3-4 adverse events were raised gamma-glutamyltransferase (13 [16%] of 80 patients; cohort A); diarrhoea (four [25%] of 20; cohort B); fatigue (four [22%] of 18; cohort C); and rash (five [26%] of 19; cohort D). 17 serious adverse reactions occurred in 11 patients, and there was one treatment-related death caused by grade 4 dyspnoea (in cohort C). INTERPRETATION: ctDNA testing offers accurate, rapid genotyping that enables the selection of mutation-directed therapies for patients with breast cancer, with sufficient clinical validity for adoption into routine clinical practice. Our results demonstrate clinically relevant activity of targeted therapies against rare HER2 and AKT1 mutations, confirming these mutations could be targetable for breast cancer treatment. FUNDING: Cancer Research UK, AstraZeneca, and Puma Biotechnology
    corecore