5,758 research outputs found

    Efficient fluorescence collection from trapped ions with an integrated spherical mirror

    Full text link
    Efficient collection of fluorescence from trapped ions is crucial for quantum optics and quantum computing applications, specifically, for qubit state detection and in generating single photons for ion-photon and remote ion entanglement. In a typical setup, only a few per cent of ion fluorescence is intercepted by the aperture of the imaging optics. We employ a simple metallic spherical mirror integrated with a linear Paul ion trap to achieve photon collection efficiency of at least 10% from a single Ba+^+ ion. An aspheric corrector is used to reduce the aberrations caused by the mirror and achieve high image quality.Comment: 5 pages and 4 figure

    Hyperfine and Optical Barium Ion Qubits

    Full text link
    State preparation, qubit rotation, and high fidelity readout are demonstrated for two separate \baseven qubit types. First, an optical qubit on the narrow 6S1/2_{1/2} to 5D5/2_{5/2} transition at 1.76 μ\mum is implemented. Then, leveraging the techniques developed there for readout, a ground state hyperfine qubit using the magnetically insensitive transition at 8 GHz is accomplished

    Precision measurement of the branching ratio in the 6P3/2 decay of BaII with a single trapped ion

    Full text link
    We present a measurement of the branching ratios from the 6P3/2 state of BaII into all dipoleallowed decay channels (6S1/2, 5D3/2 and 5D5/2). Measurements were performed on single 138Ba+ ions in a linear Paul trap with a frequency-doubled mode-locked Ti:Sapphire laser resonant with the 6S1/2->6P3/2 transition at 455 nm by detection of electron shelving into the dark 5D5/2 state. By driving a pi Rabi rotation with a single femtosecond pulse, a absolute measurement of the branching ratio to 5D5/2 state was performed. Combined with a measurement of the relative decay rates into 5D3/2 and 5D5/2 states performed with long trains of highly attenuated 455 nm pulses, it allowed the extraction of the absolute ratios of the other two decays. Relative strengths normalized to unity are found to be 0.756+/-0.046, 0.0290+/-0.0015 and 0.215+/-0.0064 for 6S1/2, 5D3/2 and 5D5/2 respectively. This approximately constitutes a threefold improvement over the best previous measurements and is a sufficient level of precision to compare to calculated values for dipole matrix elements.Comment: 6 pages, 5 figures, 1 tabl

    Measurement of Lande g factor of 5D5/2 state of BaII with a single trapped ion

    Full text link
    We present the first terrestrial measurement of the Lande g factor of the 5D5/2 state of singly ionized barium. Measurements were performed on single Doppler-cooled 138Ba+ ions in a linear Paul trap. A frequency-stabilized fiber laser with nominal wavelength 1.762 um was scanned across the 6S1/25D5/2 transition to spectroscopically resolve transitions between Zeeman sublevels of the ground and excited states. From the relative positions of the four narrow transitions observed at several different values for the applied magnetic field, we find a value of 1.2020+/-0.0005 for g of 5D5/2.Comment: 3 figure

    Temporal response to harmonic driving in electroconvection

    Full text link
    The temporal evolution of the spatially periodic electroconvection (EC) patterns has been studied within the period of the driving ac voltage by monitoring the light intensity diffracted from the pattern. Measurements have been carried out on a variety of nematic systems, including those with negative dielectric and positive conductivity anisotropy, exhibiting "standard EC" (s-EC), those with both anisotropies negative exhibiting "non-standard EC" (ns-EC), as well as those with the two anisotropies positive. Theoretical predictions have been confirmed for stationary s-EC and ns-EC patterns. Transitions with Hopf bifurcation have also been studied. While traveling had no effect on the temporal evolution of dielectric s-EC, traveling conductive s-EC and ns-EC patterns exhibited a substantially altered temporal behavior with a dependence on the Hopf frequency. It has also been shown that in nematics with both anisotropies positive, the pattern develops and decays within an interval much shorter than the period, even at relatively large driving frequencies.Comment: 19 pages, 5 figure

    Trapped Ion Imaging with a High Numerical Aperture Spherical Mirror

    Full text link
    Efficient collection and analysis of trapped ion qubit fluorescence is essential for robust qubit state detection in trapped ion quantum computing schemes. We discuss simple techniques of improving photon collection efficiency using high numerical aperture (N.A.) reflective optics. To test these techniques we placed a spherical mirror with an effective N.A. of about 0.9 inside a vacuum chamber in the vicinity of a linear Paul trap. We demonstrate stable and reliable trapping of single barium ions, in excellent agreement with our simulations of the electric field in this setup. While a large N.A. spherical mirror introduces significant spherical aberration, the ion image quality can be greatly improved by a specially designed aspheric corrector lens located outside the vacuum system. Our simulations show that the spherical mirror/corrector design is an easy and cost-effective way to achieve high photon collection rates when compared to a more sophisticated parabolic mirror setup.Comment: 5 figure
    corecore