66 research outputs found

    Functional analysis of the SRV-1 RNA frameshifting pseudoknot

    Get PDF
    Simian retrovirus type-1 uses programmed ribosomal frameshifting to control expression of the Gag-Pol polyprotein from overlapping gag and pol open-reading frames. The frameshifting signal consists of a heptanucleotide slippery sequence and a downstream-located 12-base pair pseudoknot. The solution structure of this pseudoknot, previously solved by NMR [Michiels,P.J., Versleijen,A.A., Verlaan,P.W., Pleij,C.W., Hilbers,C.W. and Heus,H.A. (2001) Solution structure of the pseudoknot of SRV-1 RNA, involved in ribosomal frameshifting. J. Mol. Biol., 310, 1109–1123] has a classical H-type fold and forms an extended triple helix by interactions between loop 2 and the minor groove of stem 1 involving base–base and base–sugar contacts. A mutational analysis was performed to test the functional importance of the triple helix for −1 frameshifting in vitro. Changing bases in L2 or base pairs in S1 involved in a base triple resulted in a 2- to 5-fold decrease in frameshifting efficiency. Alterations in the length of L2 had adverse effects on frameshifting. The in vitro effects were well reproduced in vivo, although the effect of enlarging L2 was more dramatic in vivo. The putative role of refolding kinetics of frameshifter pseudoknots is discussed. Overall, the data emphasize the role of the triple helix in −1 frameshifting

    Recode-2: new design, new search tools, and many more genes

    Get PDF
    'Recoding' is a term used to describe non-standard read-out of the genetic code, and encompasses such phenomena as programmed ribosomal frameshifting, stop codon readthrough, selenocysteine insertion and translational bypassing. Although only a small proportion of genes utilize recoding in protein synthesis, accurate annotation of ‘recoded’ genes lags far behind annotation of 'standard' genes. In order to address this issue, provide a service to researchers in the field, and offer training data for developers of gene-annotation software, we have gathered together known cases of recoding within the Recode database. Recode-2 is an improved and updated version of the database. It provides access to detailed information on genes known to utilize translational recoding and allows complex search queries, browsing of recoding data and enhanced visualization of annotated sequence elements. At present, the Recode-2 database stores information on approximately 1500 genes that are known to utilize recoding in their expression—a factor of approximately three increase over the previous version of the database. Recode-2 is available at http://recode.ucc.i

    Identification of functional, endogenous programmed −1 ribosomal frameshift signals in the genome of Saccharomyces cerevisiae

    Get PDF
    In viruses, programmed −1 ribosomal frameshifting (−1 PRF) signals direct the translation of alternative proteins from a single mRNA. Given that many basic regulatory mechanisms were first discovered in viral systems, the current study endeavored to: (i) identify −1 PRF signals in genomic databases, (ii) apply the protocol to the yeast genome and (iii) test selected candidates at the bench. Computational analyses revealed the presence of 10 340 consensus −1 PRF signals in the yeast genome. Of the 6353 yeast ORFs, 1275 contain at least one strong and statistically significant −1 PRF signal. Eight out of nine selected sequences promoted efficient levels of PRF in vivo. These findings provide a robust platform for high throughput computational and laboratory studies and demonstrate that functional −1 PRF signals are widespread in the genome of Saccharomyces cerevisiae. The data generated by this study have been deposited into a publicly available database called the PRFdb. The presence of stable mRNA pseudoknot structures in these −1 PRF signals, and the observation that the predicted outcomes of nearly all of these genomic frameshift signals would direct ribosomes to premature termination codons, suggest two possible mRNA destabilization pathways through which −1 PRF signals could post-transcriptionally regulate mRNA abundance

    The unstructured C-terminus of the τ subunit of Escherichia coli DNA polymerase III holoenzyme is the site of interaction with the α subunit

    Get PDF
    The τ subunit of Escherichia coli DNA polymerase III holoenzyme interacts with the α subunit through its C-terminal Domain V, τC16. We show that the extreme C-terminal region of τC16 constitutes the site of interaction with α. The τC16 domain, but not a derivative of it with a C-terminal deletion of seven residues (τC16Δ7), forms an isolable complex with α. Surface plasmon resonance measurements were used to determine the dissociation constant (KD) of the α−τC16 complex to be ∼260 pM. Competition with immobilized τC16 by τC16 derivatives for binding to α gave values of KD of 7 μM for the α−τC16Δ7 complex. Low-level expression of the genes encoding τC16 and τC16▵7, but not τC16Δ11, is lethal to E. coli. Suppression of this lethal phenotype enabled selection of mutations in the 3′ end of the τC16 gene, that led to defects in α binding. The data suggest that the unstructured C-terminus of τ becomes folded into a helix–loop–helix in its complex with α. An N-terminally extended construct, τC24, was found to bind DNA in a salt-sensitive manner while no binding was observed for τC16, suggesting that the processivity switch of the replisome functionally involves Domain IV of τ

    Nucleotide sequence of the Escherichia coli

    Full text link
    corecore