24 research outputs found

    Seafloor habitats across geological boundaries in Disko Bay, central West Greenland

    Get PDF
    In this paper we describe seafloor terrain of nearly the entire Disko Bay region and provide scientific baseline information about surface geology and sedimentary environments that can support the seafloor management plan in Greenland. Our study utilized multiple datasets of multibeam bathymetry and backscatter, seismic profiles and ground-truthing consisting of video footage from drop camera and benthic video sled, as well as sediment samples from grab and corers. Our results revealed that the key geological units in Disko Bay characterize the scale of geomorphic features, which in turn affects the distribution and complexity of habitat zones. The NE sub-region is underlain by Cretaceous sandstone and characterized by large-scale landforms, mainly vast flat areas draped by glacial lineations, bedrock ridges and pockmark fields. This setting promotes less topographically complex habitats, i.e. coarse plain, muddy/sandy plain with dropstones, and muddy plain. The SW sub-region is characterized by Precambrian Gneiss and Paleoproterozoic metasedimentary rocks with complex system of small-scale geomorphic features, such as cross-cutting channels. This results in topographically complex habitats in the area, such as rocky bank, coarse rugged terrain, and rocky slopes. Two distinctive habitat areas, associated with potential gas seeps, i) southern pockmark field and ii) western zoanthid-sponge wall, were discovered at the geological boundary separating the two sub-regions. Our study highlights the importance of seafloor habitat mapping and analyses by providing fundamental geophysical knowledge necessary to comply with long-term sustainable use of marine resources in Greenland

    Mapping and classifying the seabed of the West Greenland continental shelf

    Get PDF
    Marine benthic habitats support a diversity of marine organisms that are both economically and intrinsically valuable. Our knowledge of the distribution of these habitats is largely incomplete, particularly in deeper water and at higher latitudes. The western continental shelf of Greenland is one example of a deep (more than 500 m) Arctic region with limited information available. This study uses an adaptation of the EUNIS seabed classification scheme to document benthic habitats in the region of the West Greenland shrimp trawl fishery from 60°N to 72°N in depths of 61–725 m. More than 2000 images collected at 224 stations between 2011 and 2015 were grouped into 7 habitat classes. A classification model was developed using environmental proxies to make habitat predictions for the entire western shelf (200–700 m below 72°N). The spatial distribution of habitats correlates with temperature and latitude. Muddy sediments appear in northern and colder areas whereas sandy and rocky areas dominate in the south. Southern regions are also warmer and have stronger currents. The Mud habitat is the most widespread, covering around a third of the study area. There is a general pattern that deep channels and basins are dominated by muddy sediments, many of which are fed by glacial sedimentation and outlets from fjords, while shallow banks and shelf have a mix of more complex habitats. This first habitat classification map of the West Greenland shelf will be a useful tool for researchers, management and conservationists

    Community composition of epibenthic megafauna on the West Greenland Shelf

    Get PDF
    Epibenthic organisms are a critical component of the marine environment, functioning as ecosystem engineers, habitat and food for other organisms. Our knowledge of the diversity, complexity and sensitivities of these habitats is limited, particularly at higher latitudes and greater depths. The West Coast of Greenland is the site of a commercially important shrimp trawl fishery, but there are few published records describing the benthic community structure of the region. Here we report results from benthic camera surveys conducted at 119 sites, over 3 years, spanning 1400 km of the West Greenland continental shelf (61–725 m depth). A total of 29 classes of epibenthic taxa were identified from the images. There are significant differences of composition and diversity in sites with hard and soft substrate. Hard-substrate communities are relatively diverse with higher abundances and are characterised by sessile, attached groups such as Hydrozoa, Anthozoa, Bryozoa and Porifera. Soft-sediment sites are less diverse and dominated by Polychaeta and have specialist Malacostraca such as the commercially exploited shrimp, Pandalus borealis. Distribution patterns and variation in epibenthic megafauna are related to substrate and the environmental parameters depth, temperature and current speed. This study represents the first quantitative characterisation of epibenthic megafaunal assemblages on the West Greenland continental shelf. These data constitute an important baseline, albeit in a region heavily impacted by trawl fisheries, and demonstrate the utility of benthic photography for examining and monitoring seabed diversity and change

    Deep-sea benthic habitats and the impacts of trawling on them in the offshore Greenland halibut fishery, Davis Strait, west Greenland

    Get PDF
    The offshore Greenland halibut (Reinhardtius hippoglossoides) fishery, west Greenland, employs demersal trawl gear at depths of 800–1400 m. In contrast to many deep-sea fisheries, the target stock appears stable and the fishery is of significant economic importance. Recent Marine Stewardship Council certification of this fishery highlighted the paucity of knowledge of benthic habitats and trawling impacts, which this study aimed to address using a towed benthic video sled. The spatially discrete northern and southern areas of the fishery were found to be distinct in terms of the communities present, which non-metric multidimensional scaling suggests is primarily driven by temperature. Extensive physical evidence of trawling was observed. Trawling effort was significantly linked with community composition, with a negative association between trawling effort and abundance of some taxa, including some vulnerable marine ecosystem (VME) indicator species. Three potential VMEs are identified: (i) Flabellum alabastrum cup coral meadows; (ii) a Halipteris finmarchica sea pen field; and (iii) areas exhibiting mixed assemblages of VME indicators. Of immediate conservation concern is a H. finmarchica field, which seems to be at least regionally rare, is situated within the fringes of existing trawling effort and is currently afforded no protection by management measures

    First High‐Resolution Benthic Habitat Map From the Greenland Shelf (Disko Bay Pilot Study)

    Get PDF
    A healthy ocean where marine habitats and ecosystems are mapped and protected is one of the UN's Sustainable Development Goals to sustainably use marine resources. Our study presents the first high-resolution benthic habitat map from Greenland integrating analyses of multibeam bathymetry and backscatter data, and ground-truth data including video sled, drop camera and day grab. The pilot area of 30 × 20 km is located on the continental shelf in central Disko Bay, West Greenland and all data were collected in a single, 10-day survey. Multibeam bathymetry data were gridded to a 10 × 10 m resolution, whereas backscatter mosaic was built from a 1 × 1 m grid cell to obtain higher resolution manifestation of seafloor properties. Ground-truth data consisted of 14 video transects, 17 drop camera deployments, and 17 sediment samples. Our results were verified with the published shallow seismic and vibrocore data from the Disko Bay region to link the geological background with the sedimentary environment. We distinguished five physical habitats in the area, based on the distribution of sediment types, water depth with general water masses and morphology. In addition, numerous gas seeps alongside pockmarks were observed in the area, as well as recent iceberg ploughmarks. The identified habitats were associated with two basic communities of benthic fauna, linked primarily to the distribution of sediments and representing hard bottom habitats (sessile fauna) and soft bottom habitats (shrimp/polychaetes). Our study is the first step toward mapping the entire seafloor of Disko Bay to provide a scientific context for the management of seafloor and marine resources
    corecore