5 research outputs found

    First Report of a Methicillin-Resistant, High-Level Mupirocin-Resistant 'Staphylococcus' argenteus

    Full text link
    We describe the identification of a methicillin-resistant, high-level mupirocin-resistant Staphylococcus argenteus. The isolate (1801221) was characterized as t6675-ST2250-SCCmecIVc, and whole-genome sequencing revealed that the isolate possessed two plasmids. One plasmid (34,870 bp), designated p1_1801221 with rep23, harboured the mupirocin resistance (mupA) gene. The second plasmid (20,644 bp), assigned as p2_1801221 with rep5a and rep16, carried the resistance determinants for penicillin (blaZ) and cadmium (cadD). Phylogenetic analysis revealed that the isolate clustered with the European ST2250 lineage. The overall high similarity of both plasmids in S. argenteus with published DNA sequences of Staphylococcus aureus plasmids strongly suggests an interspecies transfer. The pathogenic potential, community and nosocomial spread, and acquisition of antibiotic resistance gene determinants, including the mupA gene by S. argenteus, highlight its clinical significance and the need for its correct identification

    First detection of the emerging fungal pathogen Batrachochytrium salamandrivorans in Germany

    Full text link
    The emerging infectious disease chytridiomycosis is one of the major factors triggering global amphibian declines. A recently discovered species of chytrid fungus, Batrachochytrium salamandrivorans (Bsal), likely originated in East Asia, has led to massive declines in populations of fire salamanders (Salamandra salamandra) after its apparent introduction to the Netherlands and Belgium. Here, we report the first detection of this pathogen in Germany where it caused mass mortality of fire salamanders in a captive collection. Salamanders from this collection showed an almost 100% prevalence of infection with Bsal. Supposed Bsal-induced mortality occurred in multiple Salamandra species (S. salamandra, S. algira, S. corsica, and S. infraimmaculata), while Bsal infection was confirmed in nine subspecies of S. salamandra and in S. algira. Our study indicates that this pathogen can potentially infect all fire salamander species and subspecies. If Bsal spreads from captive collections to wild populations, then a similar devastating effect associated with high mortality should be expected

    First detection of the emerging fungal pathogen Batrachochytrium salamandrivorans in Germany

    Full text link
    The emerging infectious disease chytridiomycosis is one of the major factors triggering global amphibian declines. A recently discovered species of chytrid fungus, Batrachochytrium salamandrivorans (Bsal), likely originated in East Asia, has led to massive declines in populations of fire salamanders (Salamandra salamandra) after its apparent introduction to the Netherlands and Belgium. Here, we report the first detection of this pathogen in Germany where it caused mass mortality of fire salamanders in a captive collection. Salamanders from this collection showed an almost 100% prevalence of infection with Bsal. Supposed Bsal-induced mortality occurred in multiple Salamandra species (S. salamandra, S. algira, S. corsica, and S. infraimmaculata), while Bsal infection was confirmed in nine subspecies of S. salamandra and in S. algira. Our study indicates that this pathogen can potentially infect all fire salamander species and subspecies. If Bsal spreads from captive collections to wild populations, then a similar devastating effect associated with high mortality should be expected

    A salamander’s toxic arsenal: review of skin poison diversity and function in true salamanders, genus Salamandra

    Full text link
    corecore