10 research outputs found

    Validity of inertial sensor based 3D joint kinematics of static and dynamic sport and physiotherapy specific movements

    Get PDF
    3D joint kinematics can provide important information about the quality of movements. Optical motion capture systems (OMC) are considered the gold standard in motion analysis. However, in recent years, inertial measurement units (IMU) have become a promising alternative. The aim of this study was to validate IMU-based 3D joint kinematics of the lower extremities during different movements. Twenty-eight healthy subjects participated in this study. They performed bilateral squats (SQ), single-leg squats (SLS) and countermovement jumps (CMJ). The IMU kinematics was calculated using a recently-described sensor-fusion algorithm. A marker based OMC system served as a reference. Only the technical error based on algorithm performance was considered, incorporating OMC data for the calibration, initialization, and a biomechanical model. To evaluate the validity of IMU-based 3D joint kinematics, root mean squared error (RMSE), range of motion error (ROME), Bland-Altman (BA) analysis as well as the coefficient of multiple correlation (CMC) were calculated. The evaluation was twofold. First, the IMU data was compared to OMC data based on marker clusters; and, second based on skin markers attached to anatomical landmarks. The first evaluation revealed means for RMSE and ROME for all joints and tasks below 3°. The more dynamic task, CMJ, revealed error measures approximately 1° higher than the remaining tasks. Mean CMC values ranged from 0.77 to 1 over all joint angles and all tasks. The second evaluation showed an increase in the RMSE of 2.28°– 2.58° on average for all joints and tasks. Hip flexion revealed the highest average RMSE in all tasks (4.87°– 8.27°). The present study revealed a valid IMU-based approach for the measurement of 3D joint kinematics in functional movements of varying demands. The high validity of the results encourages further development and the extension of the present approach into clinical settings

    Toward Gamified Pain Management Apps: Mobile Application Rating Scale–Based Quality Assessment of Pain-Mentor’s First Prototype Through an Expert Study

    Get PDF
    Background: The use of health apps to support the treatment of chronic pain is gaining importance. Most available pain management apps are still lacking in content quality and quantity as their developers neither involve health experts to ensure target group suitability nor use gamification to engage and motivate the user. To close this gap, we aimed to develop a gamified pain management app, Pain-Mentor. Objective: To determine whether medical professionals would approve of Pain-Mentor’s concept and content, this study aimed to evaluate the quality of the app’s first prototype with experts from the field of chronic pain management and to discover necessary improvements. Methods: A total of 11 health professionals with a background in chronic pain treatment and 2 mobile health experts participated in this study. Each expert first received a detailed presentation of the app. Afterward, they tested Pain-Mentor and then rated its quality using the mobile application rating scale (MARS) in a semistructured interview. Results: The experts found the app to be of excellent general (mean 4.54, SD 0.55) and subjective quality (mean 4.57, SD 0.43). The app-specific section was rated as good (mean 4.38, SD 0.75). Overall, the experts approved of the app’s content, namely, pain and stress management techniques, behavior change techniques, and gamification. They believed that the use of gamification in Pain-Mentor positively influences the patients’ motivation and engagement and thus has the potential to promote the learning of pain management techniques. Moreover, applying the MARS in a semistructured interview provided in-depth insight into the ratings and concrete suggestions for improvement. Conclusions: The experts rated Pain-Mentor to be of excellent quality. It can be concluded that experts perceived the use of gamification in this pain management app in a positive manner. This showed that combining pain management with gamification did not negatively affect the app’s integrity. This study was therefore a promising first step in the development of Pain-Mentor

    Toward Gamified Pain Management Apps: Mobile Application Rating Scale–Based Quality Assessment of Pain-Mentor’s First Prototype Through an Expert Study

    No full text
    Background: The use of health apps to support the treatment of chronic pain is gaining importance. Most available pain management apps are still lacking in content quality and quantity as their developers neither involve health experts to ensure target group suitability nor use gamification to engage and motivate the user. To close this gap, we aimed to develop a gamified pain management app, Pain-Mentor. Objective: To determine whether medical professionals would approve of Pain-Mentor’s concept and content, this study aimed to evaluate the quality of the app’s first prototype with experts from the field of chronic pain management and to discover necessary improvements. Methods: A total of 11 health professionals with a background in chronic pain treatment and 2 mobile health experts participated in this study. Each expert first received a detailed presentation of the app. Afterward, they tested Pain-Mentor and then rated its quality using the mobile application rating scale (MARS) in a semistructured interview. Results: The experts found the app to be of excellent general (mean 4.54, SD 0.55) and subjective quality (mean 4.57, SD 0.43). The app-specific section was rated as good (mean 4.38, SD 0.75). Overall, the experts approved of the app’s content, namely, pain and stress management techniques, behavior change techniques, and gamification. They believed that the use of gamification in Pain-Mentor positively influences the patients’ motivation and engagement and thus has the potential to promote the learning of pain management techniques. Moreover, applying the MARS in a semistructured interview provided in-depth insight into the ratings and concrete suggestions for improvement. Conclusions: The experts rated Pain-Mentor to be of excellent quality. It can be concluded that experts perceived the use of gamification in this pain management app in a positive manner. This showed that combining pain management with gamification did not negatively affect the app’s integrity. This study was therefore a promising first step in the development of Pain-Mentor

    Force Shadows: An Online Method to Estimate and Distribute Vertical Ground Reaction Forces from Kinematic Data

    No full text
    Kinetic models of human motion rely on boundary conditions which are defined by the interaction of the body with its environment. In the simplest case, this interaction is limited to the foot contact with the ground and is given by the so called ground reaction force (GRF). A major challenge in the reconstruction of GRF from kinematic data is the double support phase, referring to the state with multiple ground contacts. In this case, the GRF prediction is not well defined. In this work we present an approach to reconstruct and distribute vertical GRF (vGRF) to each foot separately, using only kinematic data. We propose the biomechanically inspired force shadow method (FSM) to obtain a unique solution for any contact phase, including double support, of an arbitrary motion. We create a kinematic based function, model an anatomical foot shape and mimic the effect of hip muscle activations. We compare our estimations with the measurements of a Zebris pressure plate and obtain correlations of 0.39≤r≤0.94 for double support motions and 0.83≤r≤0.87 for a walking motion. The presented data is based on inertial human motion capture, showing the applicability for scenarios outside the laboratory. The proposed approach has low computational complexity and allows for online vGRF estimation

    Force Shadows: An Online Method to Estimate and Distribute Vertical Ground Reaction Forces from Kinematic Data

    No full text
    Kinetic models of human motion rely on boundary conditions which are defined by the interaction of the body with its environment. In the simplest case, this interaction is limited to the foot contact with the ground and is given by the so called ground reaction force (GRF). A major challenge in the reconstruction of GRF from kinematic data is the double support phase, referring to the state with multiple ground contacts. In this case, the GRF prediction is not well defined. In this work we present an approach to reconstruct and distribute vertical GRF (vGRF) to each foot separately, using only kinematic data. We propose the biomechanically inspired force shadow method (FSM) to obtain a unique solution for any contact phase, including double support, of an arbitrary motion. We create a kinematic based function, model an anatomical foot shape and mimic the effect of hip muscle activations. We compare our estimations with the measurements of a Zebris pressure plate and obtain correlations of 0.39≤r≤0.94 for double support motions and 0.83≤r≤0.87 for a walking motion. The presented data is based on inertial human motion capture, showing the applicability for scenarios outside the laboratory. The proposed approach has low computational complexity and allows for online vGRF estimation

    Feature extraction and gait classification in hip replacement patients on the basis of kinematic waveform data

    No full text
    Study aim: To find out, without relying on gait-specific assumptions or prior knowledge, which parameters are most important for the description of asymmetrical gait in patients after total hip arthroplasty (THA). Material and methods: The gait of 22 patients after THA was recorded using an optical motion capture system. The waveform data of the marker positions, velocities, and accelerations, as well as joint and segment angles, were used as initial features. The random forest (RF) and minimum-redundancy maximum-relevance (mRMR) algorithms were chosen for feature selection. The results were compared with those obtained from the use of different dimensionality reduction methods. Results: Hip movement in the sagittal plane, knee kinematics in the frontal and sagittal planes, marker position data of the anterior and posterior superior iliac spine, and acceleration data for markers placed at the proximal end of the fibula are highly important for classification (accuracy: 91.09%). With feature selection, better results were obtained compared to dimensionality reduction. Conclusion: The proposed approaches can be used to identify and individually address abnormal gait patterns during the rehabilitation process via waveform data. The results indicate that position and acceleration data also provide significant information for this task

    Feature extraction and gait classification in hip replacement patients on the basis of kinematic waveform data

    No full text
    Study aim: To find out, without relying on gait-specific assumptions or prior knowledge, which parameters are most important for the description of asymmetrical gait in patients after total hip arthroplasty (THA). Material and methods: The gait of 22 patients after THA was recorded using an optical motion capture system. The waveform data of the marker positions, velocities, and accelerations, as well as joint and segment angles, were used as initial features. The random forest (RF) and minimum-redundancy maximum-relevance (mRMR) algorithms were chosen for feature selection. The results were compared with those obtained from the use of different dimensionality reduction methods. Results: Hip movement in the sagittal plane, knee kinematics in the frontal and sagittal planes, marker position data of the anterior and posterior superior iliac spine, and acceleration data for markers placed at the proximal end of the fibula are highly important for classification (accuracy: 91.09%). With feature selection, better results were obtained compared to dimensionality reduction. Conclusion: The proposed approaches can be used to identify and individually address abnormal gait patterns during the rehabilitation process via waveform data. The results indicate that position and acceleration data also provide significant information for this task

    Towards an Inertial Sensor-Based Wearable Feedback System for Patients after Total Hip Arthroplasty: Validity and Applicability for Gait Classification with Gait Kinematics-Based Features

    Get PDF
    Patients after total hip arthroplasty (THA) suffer from lingering musculoskeletal restrictions. Three-dimensional (3D) gait analysis in combination with machine-learning approaches is used to detect these impairments. In this work, features from the 3D gait kinematics, spatio temporal parameters (Set 1) and joint angles (Set 2), of an inertial sensor (IMU) system are proposed as an input for a support vector machine (SVM) model, to differentiate impaired and non-impaired gait. The features were divided into two subsets. The IMU-based features were validated against an optical motion capture (OMC) system by means of 20 patients after THA and a healthy control group of 24 subjects. Then the SVM model was trained on both subsets. The validation of the IMU system-based kinematic features revealed root mean squared errors in the joint kinematics from 0.24° to 1.25°. The validity of the spatio-temporal gait parameters (STP) revealed a similarly high accuracy. The SVM models based on IMU data showed an accuracy of 87.2% (Set 1) and 97.0% (Set 2). The current work presents valid IMU-based features, employed in an SVM model for the classification of the gait of patients after THA and a healthy control. The study reveals that the features of Set 2 are more significant concerning the classification problem. The present IMU system proves its potential to provide accurate features for the incorporation in a mobile gait-feedback system for patients after THA

    Validity of inertial sensor based 3D joint kinematics of static and dynamic sport and physiotherapy specific movements

    No full text
    3D joint kinematics can provide important information about the quality of movements. Optical motion capture systems (OMC) are considered the gold standard in motion analysis. However, in recent years, inertial measurement units (IMU) have become a promising alternative. The aim of this study was to validate IMU-based 3D joint kinematics of the lower extremities during different movements. Twenty-eight healthy subjects participated in this study. They performed bilateral squats (SQ), single-leg squats (SLS) and countermovement jumps (CMJ). The IMU kinematics was calculated using a recently-described sensor-fusion algorithm. A marker based OMC system served as a reference. Only the technical error based on algorithm performance was considered, incorporating OMC data for the calibration, initialization, and a biomechanical model. To evaluate the validity of IMU-based 3D joint kinematics, root mean squared error (RMSE), range of motion error (ROME), Bland-Altman (BA) analysis as well as the coefficient of multiple correlation (CMC) were calculated. The evaluation was twofold. First, the IMU data was compared to OMC data based on marker clusters; and, second based on skin markers attached to anatomical landmarks. The first evaluation revealed means for RMSE and ROME for all joints and tasks below 3°. The more dynamic task, CMJ, revealed error measures approximately 1° higher than the remaining tasks. Mean CMC values ranged from 0.77 to 1 over all joint angles and all tasks. The second evaluation showed an increase in the RMSE of 2.28°– 2.58° on average for all joints and tasks. Hip flexion revealed the highest average RMSE in all tasks (4.87°– 8.27°). The present study revealed a valid IMU-based approach for the measurement of 3D joint kinematics in functional movements of varying demands. The high validity of the results encourages further development and the extension of the present approach into clinical settings

    Towards an Inertial Sensor-Based Wearable Feedback System for Patients after Total Hip Arthroplasty: Validity and Applicability for Gait Classification with Gait Kinematics-Based Features

    No full text
    Patients after total hip arthroplasty (THA) suffer from lingering musculoskeletal restrictions. Three-dimensional (3D) gait analysis in combination with machine-learning approaches is used to detect these impairments. In this work, features from the 3D gait kinematics, spatio temporal parameters (Set 1) and joint angles (Set 2), of an inertial sensor (IMU) system are proposed as an input for a support vector machine (SVM) model, to differentiate impaired and non-impaired gait. The features were divided into two subsets. The IMU-based features were validated against an optical motion capture (OMC) system by means of 20 patients after THA and a healthy control group of 24 subjects. Then the SVM model was trained on both subsets. The validation of the IMU system-based kinematic features revealed root mean squared errors in the joint kinematics from 0.24° to 1.25°. The validity of the spatio-temporal gait parameters (STP) revealed a similarly high accuracy. The SVM models based on IMU data showed an accuracy of 87.2% (Set 1) and 97.0% (Set 2). The current work presents valid IMU-based features, employed in an SVM model for the classification of the gait of patients after THA and a healthy control. The study reveals that the features of Set 2 are more significant concerning the classification problem. The present IMU system proves its potential to provide accurate features for the incorporation in a mobile gait-feedback system for patients after THA
    corecore