63 research outputs found

    Inducible cAMP Early Repressor Regulates Corticosterone Suppression after Tricyclic Antidepressant Treatment

    Get PDF
    The cAMP-response element binding protein (CREB) is involved in antidepressant action, but the role of related CRE-binding transcription factors in the behavioral and endocrine responses to antidepressants is unclear. Alternative transcription of the cAMP response element-modulator (CREM) gene yields activator and repressor isoforms, including the strong repressor induciblecAMPearly repressor (ICER). ICER is highly expressed in hypothalamic tissues and upregulated after electroconvulsive seizure. Thus, ICER may be a novel mediator of antidepressant action at endocrine and/or behavioral levels. Here we establish that both subchronic and chronic desipramine (DMI) treatments upregulate hypothalamic ICER expression in wild-type mice. Behavioral responses to DMI in the forced swim and tail suspension tests are unchanged in mice lacking ICER. However, the ability of DMI to suppress an acute corticosterone response after swim stress is compromised in ICER-deficient mice, suggesting that increased hypothalamic ICER mRNA after DMI treatment may be required for suppression of corticosterone release. To investigate the mechanism underlying this response, we measured corticotropin releasing factor (CRF), an upstream modulator of corticosterone release. Using real-time quantitative PCR, we establish that hypothalamic CRF expression is significantly reduced after swim exposure in DMI-treated wild-type mice, however DMI is unable to blunt hypothalamic CRF expression in ICER-deficient mice. Furthermore, we demonstrate that ICER is enriched in CRF-expressing neurons in the paraventricular nucleus of the hypothalamus. These data indicate that ICER is required for DMI to reduce stress-induced corticosterone release through regulation of hypothalamic CRF expression, revealing a novel role for ICER in antidepressant regulation of the hypothalamic–pituitary adrenal axis

    cAMP Response Element-Binding Protein Is Essential for the Upregulation of Brain-Derived Neurotrophic Factor Transcription, But Not the Behavioral or Endocrine Responses to Antidepressant Drugs

    Get PDF
    Antidepressant drugs activate the cAMP signal transduction pathway through a variety of monoamine neurotransmitter receptors. Recently, molecular studies have identified a role for cAMP response element-binding protein (CREB) in the mechanism of action of chronically administered antidepressant drugs. However, the function of CREB in the behavioral and endocrine responses to these drugs has not been thoroughly investigated. We have used CREB-deficient mice to study the effects of two antidepressants, desipramine (DMI) and fluoxetine (FLX), in behavioral, endocrine, and molecular analyses. Behaviorally, CREB-deficient mice and wild-type mice respond similarly to DMI and FLX administration in the forced swim test and tail suspension test. Furthermore, the ability of DMI to suppress an acute corticosterone response after swim stress is maintained in CREB-deficient mice. However, upregulation of a molecular target of CREB, BDNF, is abolished in the CREBdeficient mice after chronic administration of DMI. These data are the first to demonstrate that CREB activation is upstream of BDNF mechanistically in response to antidepressant drug treatment. Therefore, although behavioral and endocrine responses to antidepressants may occur by CREB-independent mechanisms, CREB is critical to target gene regulation after chronic drug administration, which may contribute to long-term adaptations of the system to antidepressant drug treatment

    cAMP Response Element-Binding Protein Deficiency Allows for Increased Neurogenesis and a Rapid Onset of Antidepressant Response

    Get PDF
    cAMP response element-binding protein (CREB) has been implicated in the molecular and cellular mechanisms of chronic antidepressant (AD) treatment, although its role in the behavioral response is unclear. CREB-deficient (CREBαΔ mutant) mice demonstrate an antidepressant phenotype in the tail suspension test (TST) and forced-swim test. Here, we show that, at baseline, CREBαΔ mutant mice exhibited increased hippocampal cell proliferation and neurogenesis compared with wild-type (WT) controls, effects similar to those observed in WT mice after chronic desipramine (DMI) administration. Neurogenesis was not further augmented by chronic DMI treatment in CREBαΔ mutant mice. Serotonin depletion decreased neurogenesis in CREBαΔ mutant mice toWTlevels, which correlated with a reversal of the antidepressant phenotype in the TST. This effect was specific for the reversal of the antidepressant phenotype in these mice, because serotonin depletion did not alter a baseline anxiety-like behavior in CREB mutant mice. The response to chronic AD treatment in the novelty-induced hypophagia (NIH) test may rely on neurogenesis. Therefore, we used this paradigm to evaluate chronic AD treatment in CREB mutant mice to determine whether the increased neurogenesis in these mice alters their response in the NIH paradigm. Whereas both WT and CREBαΔ mutant mice responded to chronic AD treatment in the NIH paradigm, only CREBαΔ mutant mice responded to acute AD treatment. However, in the elevated zero maze, DMI did not reverse anxiety behavior in mutant mice. Together, these data show that increased hippocampal neurogenesis allows for an antidepressant phenotype as well as a rapid onset of behavioral responses to AD treatment

    Regional patterns of compensation following genetic deletion of either 5-hydroxytryptamine(1A) or 5-hydroxytryptamine(1B) receptor in the mouse.

    No full text
    ABSTRACT Plasticity in serotonergic transmission in serotonin or 5-hydroxytryptamine (5-HT) receptor mutants was examined by measuring the regulation of extracellular 5-HT levels in the striatum and ventral hippocampus of 5-HT 1A and 5-HT 1B receptor knockout mice using in vivo microdialysis. The efficacy of genetic deletion was verified by showing blunted regulation of extracellular 5-HT with selective 5-HT receptor agonists. 5-HT 1A receptor knockout mice failed to demonstrate reduction of extracellular 5-HT in response to systemic administration of the 5-HT 1A receptor agonist R-8-hydroxydipropylaminotetralin (R-8-OH-DPAT) and 5-HT 1B receptor knockout mice failed to demonstrate reduction of extracellular 5-HT in response to systemic administration of the 5-HT 1B receptor agonist CP 94,253. Plasticity also developed to deletion of the complementary autoreceptor. 5-HT 1A receptor knockout mice demonstrated a significantly greater response to CP 94,253 in the striatum, but not the ventral hippocampus, suggesting the development of enhanced sensitivity of striatal 5-HT 1B receptors. In 5-HT 1B receptor knockout mice, R-8-OH-DPAT evoked a significantly diminished response in the ventral hippocampus, but not the striatum, suggesting the potential desensitization of 5-HT 1A receptors in the median raphe nucleus. The pattern of regional compensations between somatodendritic and terminal autoreceptors was confirmed by pharmacological challenges using the selective serotonin reuptake inhibitor fluoxetine combined with either a 5-HT 1A (WAY 100635) or a 5-HT 1B/1D (GR 127935) receptor antagonist. The regional pattern of compensation may be determined by the preferential role of 5-HT 1A or 5-HT 1B receptors in regulating 5-HT release. Taken together, these results demonstrate the development of regional plasticity between complementary somatodendritic and terminal autoreceptors after the genetic deletion of 5-HT 1A or 5-HT 1B receptors. Two types of serotonin or 5-hydroxytryptamine (5-HT) autoreceptors provide critical regulation of 5-HT release in the rat brain by supplying mechanisms for presynaptic inhibitory feedback. The 5-HT 1A autoreceptors are located in the somatodendritic neuronal region, at the site of the serotonergic cell bodies in the dorsal (DR) or median (MR) raphe nucleus, and regulate the release of 5-HT by modulating neurotransmitter synthesis, terminal release, and cell discharge rate The ability of autoreceptors to regulate extracellular levels of 5-HT during release has made them the focus of much interest. 5-HT autoreceptors are desensitized by the chronic administration of antidepressant drugs and this may account for the delay in appearance of therapeutic effect

    Nicotinic Partial Agonists Varenicline and Sazetidine-A Have Differential Effects on Affective Behavior

    No full text
    Clinical and preclinical studies suggest that nicotinic acetylcholine receptors are involved in affective disorders; therefore, the potential therapeutic value of nicotinic partial agonists as treatments of these disorders is of growing interest. This study evaluated the effects of acute and chronic administration of nicotine and the α4β2 nicotinic partial agonists varenicline and sazetidine-A in mouse models of anxiety and depression. Acutely, only nicotine and varenicline had anxiolytic effects in the marble-burying test and in the novelty-induced hypophagia (NIH) test. In contrast, in animal models of antidepressant efficacy, such as the forced swim and the tail suspension test, only acute sazetidine-A had significant antidepressant-like effects. The NIH test provides an anxiety-related measure that is sensitive to the effects of chronic but not acute antidepressant treatment. Chronic nicotine and chronic sazetidine-A treatment were effective in this paradigm, but varenicline was ineffective. These results suggest that the partial agonists varenicline and sazetidine-A may have diverse therapeutic benefits in affective disorders
    corecore