851 research outputs found
Proper Motions of H-alpha filaments in the Supernova Remnant RCW 86
We present a proper motion study of the eastern shock-region of the supernova
remnant RCW 86 (MSH 14-63, G315.4-2.3), based on optical observations carried
out with VLT/FORS2 in 2007 and 2010. For both the northeastern and southeastern
regions, we measure an average proper motion of H-alpha filaments of 0.10 +/-
0.02 arcsec/yr, corresponding to 1200 +/- 200 km/s at 2.5kpc. There is
substantial variation in the derived proper motions, indicating shock
velocities ranging from just below 700 km/s to above 2200 km/s.
The optical proper motion is lower than the previously measured X-ray proper
motion of northeastern region. The new measurements are consistent with the
previously measured proton temperature of 2.3 +/- 0.3 keV, assuming no
cosmic-ray acceleration. However, within the uncertainties, moderately
efficient (< 27 per cent) shock acceleration is still possible. The combination
of optical proper motion and proton temperature rule out the possibility that
RCW 86 has a distance less than 1.5kpc.
The similarity of the proper motions in the northeast and southeast is
peculiar, given the different densities and X-ray emission properties of the
regions. The northeastern region has lower densities and the X-ray emission is
synchrotron dominated, suggesting that the shock velocities should be higher
than in the southeastern, thermal X-ray dominated, region. A possible solution
is that the H-alpha emitting filaments are biased toward denser regions, with
lower shock velocities. Alternatively, in the northeast the shock velocity may
have decreased rapidly during the past 200yr, and the X-ray synchrotron
emission is an afterglow from a period when the shock velocity was higher.Comment: Accepted for publication in MNRA
Measuring the cosmic ray acceleration efficiency of a supernova remnant
Cosmic rays are the most energetic particles arriving at earth. Although most
of them are thought to be accelerated by supernova remnants, the details of the
acceleration process and its efficiency are not well determined. Here we show
that the pressure induced by cosmic rays exceeds the thermal pressure behind
the northeast shock of the supernova remnant RCW 86, where the X-ray emission
is dominated by synchrotron radiation from ultra-relativistic electrons. We
determined the cosmic-ray content from the thermal Doppler broadening measured
with optical spectroscopy, combined with a proper-motion study in X- rays. The
measured post-shock proton temperature in combination with the shock velocity
does not agree with standard shock heating, implying that >50% of the
post-shock pressure is produced by cosmic rays.Comment: Published in Science express, 10 pages, 5 figures and 2 table
The Radial Structure of the Cygnus Loop Supernova Remnant --- Possible evidence of a cavity explosion ---
We observed the North-East (NE) Limb toward the center region of the Cygnus
Loop with the ASCA Observatory. We found a radial variation of electron
temperature (kTe) and ionization timescale (log(\tau)) whereas no variation
could be found for the abundances of heavy elements. In this paper, we
re-analyzed the same data set and new observations with the latest calibration
files. Then we constructed the precise spatial variations of kTe, log(\tau),
and abundances of O, Ne, Mg, Si, and Fe over the field of view (FOV). We found
a spatial variation not only in kTe and in log(\tau) but also in most of heavy
elements. As described in Miyata et al. (1994), values of kTe increase and
those of log(\tau) decrease toward the inner region. We found that the
abundance of heavy elements increases toward the inner region. The radial
profiles of O, Ne, and Fe show clear jump structures at a radius of 0.9 Rs,
where Rs is the shock radius. Outside of 0.9 Rs, abundances of all elements are
constant. On the contrary, inside of 0.9 Rs, abundances of these elements are
20--30 % larger than those obtained outside of 0.9 Rs. The radial profile of
kTe also shows the jump structure at 0.9 Rs. This means that the hot and metal
rich plasma fills the volume inside of 0.9 Rs. We concluded that this jump
structure was the possible evidence for the pre-existing cavity produced by the
precursor. If the ejecta fills inside of 0.9 Rs, the total mass of the ejecta
was roughly 4\Msun. We then estimated the main-sequence mass to be roughly
15\Msun, which supports the massive star in origin of the Cygnus Loop supernova
remnant and the existence of a pre-existing cavity.Comment: 37 pages, 14 figures. Accepted for publication of Ap
Recommended from our members
Needs and opportunities in mineral evolution research
Progress in understanding mineral evolution, Earth’s changing near-surface mineralogy through time, depends on the availability of detailed information on mineral localities of known ages and geologic settings. A comprehensive database including this information, employing the mindat.org web site as a platform, is now being implemented. This resource will incorporate software to correlate a range of mineral occurrences and properties vs. time, and it will thus facilitate studies of the chang- ing diversity, distribution, associations, and characteristics of individual minerals as well as mineral groups. The Mineral Evolution Database thus holds the prospect of revealing mineralogical records of important geophysical, geochemical, and biological events in Earth history.Organismic and Evolutionary Biolog
Evaluation of pulmonary arterial hypertension: invasive or noninvasive?
Vascular Biology and Interventio
Cosmic ray diffusion near the Bohm limit in the Cassiopeia A supernova remnant
Supernova remnants (SNRs) are believed to be the primary location of the
acceleration of Galactic cosmic rays, via diffusive shock (Fermi) acceleration.
Despite considerable theoretical work the precise details are still unknown, in
part because of the difficulty in directly observing nucleons that are
accelerated to TeV energies in, and affect the structure of, the SNR shocks.
However, for the last ten years, X-ray observatories ASCA, and more recently
Chandra, XMM-Newton, and Suzaku have made it possible to image the synchrotron
emission at keV energies produced by cosmic-ray electrons accelerated in the
SNR shocks. In this article, we describe a spatially-resolved spectroscopic
analysis of Chandra observations of the Galactic SNR Cassiopeia A to map the
cutoff frequencies of electrons accelerated in the forward shock. We set upper
limits on the electron diffusion coefficient and find locations where particles
appear to be accelerated nearly as fast as theoretically possible (the Bohm
limit).Comment: 18 pages, 5 figures. Accepted for publication in Nature Physics (DOI
below), final version available week of August 28, 2006 at
http://www.nature.com/nphy
Selective deletion of endothelial cell calpain in mice reduces diabetic cardiomyopathy by improving angiogenesis
Aims/hypothesis: The role of non-cardiomyocytes in diabetic cardiomyopathy has not been fully addressed. This study investigated whether endothelial cell calpain plays a role in myocardial endothelial injury and microvascular rarefaction in diabetes, thereby contributing to diabetic cardiomyopathy. Methods: Endothelial cell-specific Capns1-knockout (KO) mice were generated. Conditions mimicking prediabetes and type 1 and type 2 diabetes were induced in these KO mice and their wild-type littermates. Myocardial function and coronary flow reserve were assessed by echocardiography. Histological analyses were performed to determine capillary density, cardiomyocyte size and fibrosis in the heart. Isolated aortas were assayed for neovascularisation. Cultured cardiac microvascular endothelial cells were stimulated with high palmitate. Angiogenesis and apoptosis were analysed. Results: Endothelial cell-specific deletion of Capns1 disrupted calpain 1 and calpain 2 in endothelial cells, reduced cardiac fibrosis and hypertrophy, and alleviated myocardial dysfunction in mouse models of diabetes without significantly affecting systemic metabolic variables. These protective effects of calpain disruption in endothelial cells were associated with an increase in myocardial capillary density (wild-type vs Capns1-KO 3646.14 ± 423.51 vs 4708.7 ± 417.93 capillary number/high-power field in prediabetes, 2999.36 ± 854.77 vs 4579.22 ± 672.56 capillary number/high-power field in type 2 diabetes and 2364.87 ± 249.57 vs 3014.63 ± 215.46 capillary number/high-power field in type 1 diabetes) and coronary flow reserve. Ex vivo analysis of neovascularisation revealed more endothelial cell sprouts from aortic rings of prediabetic and diabetic Capns1-KO mice compared with their wild-type littermates. In cultured cardiac microvascular endothelial cells, inhibition of calpain improved angiogenesis and prevented apoptosis under metabolic stress. Mechanistically, deletion of Capns1 elevated the protein levels of β-catenin in endothelial cells of Capns1-KO mice and constitutive activity of calpain 2 suppressed β-catenin protein expression in cultured endothelial cells. Upregulation of β-catenin promoted angiogenesis and inhibited apoptosis whereas knockdown of β-catenin offset the protective effects of calpain inhibition in endothelial cells under metabolic stress. Conclusions/interpretation: These results delineate a primary role of calpain in inducing cardiac endothelial cell injury and impairing neovascularisation via suppression of β-catenin, thereby promoting diabetic cardiomyopathy, and indicate that calpain is a promising therapeutic target to prevent diabetic cardiac complications
HELPinKids & Adults knowledge synthesis of the management of vaccination pain and high levels of needle fear limitations of the evidence and recommendations for future research
The HELPinKids&Adults knowledge synthesis for the management of vaccination-related pain and high levels of needle fear updated and expanded upon the 2010 HELPinKIDS knowledge synthesis and clinical practice guideline for pain mitigation during vaccine injections in childhood. Interventions for vaccine pain management in adults and treatment of individuals with high levels of needle fear, phobias, or both were included, thereby broadening the reach of this work. The present paper outlines the overarching limitations of this diverse evidence base and provides recommendations for future research. Consistent with the framing of clinical questions in the systematic reviews, the Participants, Intervention, Comparison, Outcome, Study design (PICOAS) framework was used to organize these predominant issues and research directions. The major limitations we identified across systematic reviews were an overall dearth of trials on vaccination, lack of methodological rigor, failure to incorporate important outcomes, poor study reporting, and various sources of heterogeneity. Future research directions in terms of conducting additional trials in the vaccination context, improving methodological quality and rigor, assessment of global acceptability and feasibility of interventions, and inclusion of outcomes that stakeholders consider to be important (eg, compliance) are recommended. Given concerns about pain and fear are known contributors to vaccine hesitancy, improving and expanding this evidence base will be integral to broader efforts to improve vaccine compliance and public health worldwide
Process interventions for vaccine injections: Systematic review of randomized controlled trials and quasi-randomized controlled trials
Background: This systematic review evaluated the effectiveness of process interventions (education for clinicians, parent presence, education of parents [before and on day of vaccination], and education of patients on day of vaccination) on reducing vaccination pain, fear, and distress and increasing the use of interventions during vaccination. Design/Methods: Databases were searched using a broad search strategy to identify relevant randomized and quasi-randomized controlled trials. Critical outcomes were pain, fear, distress (when applicable), and use of pain management interventions. Data were extracted according to procedure phase (preprocedure, acute, recovery, combinations of these) and pooled using established methods. Analyses were conducted using standardized mean differences (SMD) and risk ratios (RR). Results: Thirteen studies were included. Results were generally mixed. On the basis of low to very low-quality evidence, the following specific critical outcomes showed significant effects suggesting: (1) clinicians should be educated about vaccine injection pain management (use of interventions: SMD 0.66; 95% confidence interval [CI]: 0.47, 0.85); (2) parents should be present (distress preprocedure: SMD -0.85; 95% CI: -1.35, -0.35); (3) parents should be educated before the vaccination day (use of intervention preprocedure: SMD 0.83; 95% CI: 0.25, 1.41 and RR, 2.08; 95% CI: 1.51, 2.86; distress acute: SMD, -0.35; 95% CI: -0.57, -0.13); (4) parents should be educated on the vaccination day (use of interventions: SMD 1.02; 95% CI: 0.22, 1.83 and RR, 2.42; 95% CI: 1.47, 3.99; distress preprocedure+acute+ recovery: SMD -0.48; 95% CI: -0.82, -0.15); and (5) individuals 3 years of age and above should be educated on the day of vaccination (fear preprocedure: SMD -0.67; 95% CI: -1.28, -0.07). Conclusions: Educating individuals involved in the vaccination procedure (clinicians, parents of children being vaccinated; individuals above 3 y of age) is beneficial to increase use of pain management strategies, reduce distress surrounding with vaccination, and to reduce fear. When possible, parent presence is also recommended for children undergoing vaccination
- …