4 research outputs found
Frequency division multiplexing for interferometric planar Doppler velocimetry
A new method of acquiring simultaneously the signal and reference channels used for interferometric
planar Doppler velocimetry is proposed and demonstrated. The technique uses frequency division multiplexing
(FDM) to facilitate the capture of the requisite images on a single camera, and is suitable for
time-averaged flow measurements. Furthermore, the approach has the potential to be expanded to allow
the multiplexing of additional measurement channels for multicomponent velocity measurement. The
use of FDM for interferometric referencing is demonstrated experimentally with measurements
of a single velocity component of a seeded axisymmetric air jet. The expansion of the technique to
include multiple velocity components was then investigated theoretically and experimentally to
account for bandwidth, crosstalk, and dynamic range limitations. The technique offers reduced
camera noise, automatic background light suppression, and crosstalk levels of typically <10%.
Furthermore, as this crosstalk is dependent upon the channel modulations applied, it can be corrected for in postprocessing
Reduced P300 amplitude during retrieval on a spatial working memory task in a community sample of adolescents who report psychotic symptoms.
BACKGROUND: Deficits in working memory are widely reported in schizophrenia and are considered a trait marker for the disorder. Event-related potentials (ERPs) and imaging data suggest that these differences in working memory performance may be due to aberrant functioning in the prefrontal and parietal cortices. Research suggests that many of the same risk factors for schizophrenia are shared with individuals from the general population who report psychotic symptoms. METHODS: Forty-two participants (age range 11--13 years) were divided into those who reported psychotic symptoms (N = 17) and those who reported no psychotic symptoms, i.e. the control group (N = 25). Behavioural differences in accuracy and reaction time were explored between the groups as well as electrophysiological correlates of working memory using a Spatial Working Memory Task, which was a variant of the Sternberg paradigm. Specifically, differences in the P300 component were explored across load level (low load and high load), location (positive probe i.e. in the same location as shown in the study stimulus and negative probe i.e. in a different location to the study stimulus) and between groups for the overall P300 timeframe. The effect of load was also explored at early and late timeframes of the P300 component (250-430 ms and 430-750 ms respectively). RESULTS: No between-group differences in the behavioural data were observed. Reduced amplitude of the P300 component was observed in the psychotic symptoms group relative to the control group at posterior electrode sites. Amplitude of the P300 component was reduced at high load for the late P300 timeframe at electrode sites Pz and POz. CONCLUSIONS: These results identify neural correlates of neurocognitive dysfunction associated with population level psychotic symptoms and provide insights into ERP abnormalities associated with the extended psychosis phenotype
Frequency-division-multiplexing technique for imaging metrology
An algorithm to multiplex multiple image captures simultaneously onto a single image sensor at full frame resolution was developed for imaging metrology. Parseval’s theorem was used to obtain the image intensity from image time-series of around typically 256 frames captured by the imaging sensor at typically 60 fps, though kHz frame rates are possible, hardware permitting. The time-series contained contributions from each image channel in the system, which were created by periodically modulating the intensity of the light source which defined that channel. The modulating time-series was converted to a frequency representation by Fourier transform and from that the channels could be identified by their peaks in the spectrum. Peaks corresponding to each channel were then isolated with a window function and Parseval’s theorem applied on a pixel by pixel basis to convert the signal strength back to an image containing the information from that channel only.
The FDM algorithm was then applied to two imaging metrology methods. First, an in-plane, two-channel shearography system was multiplexed with FDM in such a way as to allow time-division multiplexed measurements to be taken on the same deformations with the same instrument so as to allow comparison of results from other methods. FDM was found to produce good quality results comparable with current methods. Interferometric planar Doppler velocimetry was performed, multiplexing the reference phase channel signal and a signal channel for both a wheel and a gas jet. FDM was found to suppress the effects of phase drifts in the system which would lead to velocity offsets in the results, and gave velocities which varied from the model by only up to ~5%.
Finally, an error analysis was performed on the FDM algorithm, comparing the technique with time-averaging and single image capture through simulation and practical methods. It was shown that FDM strongly suppresses the noise and background in a measurement, and can produce good images from low intensity signals.
It could be concluded that the FDM algorithm offers significant advantages over time-averaging a signal when applied to a multi-channel imaging metrology system