299 research outputs found
Comment on ``Precision measurement of the Casimir-Lifshitz force in a fluid''
Recently J.N. Munday and F. Capasso [Phys. Rev. A {\bf 75}, 060102(R) (2007);
arXiv:0705.3793] claimed that they have performed a precision measurement of
the Casimir force between a sphere and a plate coated with Au, both immersed in
ethanol. The measurement results were claimed to be consistent with the
Lifshitz theory. We demonstrate that the calculation of the Casimir force
between the smooth bodies following the authors prescription has a discrepancy
up to 25% with respect to authors result. We show also that the attractive
electrostatic force only due to the surface potential differences was
underestimated by a factor of 590 and the charge double layer interaction was
not taken into account. All this leads to the conclusion that the results of
this experiment are in fact uncertain.Comment: 5 pages, 1 figure, submitted to Physical Review A; corrections are
made in accordance to referee's suggestion
Energy levels and decoherence properties of single electron and nuclear spins in a defect center in diamond
The coherent behavior of the single electron and single nuclear spins of a
defect center in diamond and a 13C nucleus in its vicinity, respectively, are
investigated. The energy levels associated with the hyperfine coupling of the
electron spin of the defect center to the 13C nuclear spin are analyzed.
Methods of magnetic resonance together with optical readout of single defect
centers have been applied in order to observe the coherent dynamics of the
electron and nuclear spins. Long coherence times, in the order of microseconds
for electron spins and tens of microseconds for nuclear spins, recommend the
studied system as a good experimental approach for implementing a 2-qubit gate.Comment: 4 pages, 4 figure
Equation of the field lines of an axisymmetric multipole with a source surface
Optical spectropolarimeters can be used to produce maps of the surface magnetic fields of stars and hence to determine how stellar magnetic fields vary with stellar mass, rotation rate, and evolutionary stage. In particular, we now can map the surface magnetic fields of forming solar-like stars, which are still contracting under gravity and are surrounded by a disk of gas and dust. Their large scale magnetic fields are almost dipolar on some stars, and there is evidence for many higher order multipole field components on other stars. The availability of new data has renewed interest in incorporating multipolar magnetic fields into models of stellar magnetospheres. I describe the basic properties of axial multipoles of arbitrary degree ℓ and derive the equation of the field lines in spherical coordinates. The spherical magnetic field components that describe the global stellar field topology are obtained analytically assuming that currents can be neglected in the region exterior to the star, and interior to some fixed spherical equipotential surface. The field components follow from the solution of Laplace’s equation for the magnetostatic potential
Test for interlayer coherence in a quasi-two-dimensional superconductor
Peaks in the magnetoresistivity of the layered superconductor
-(BEDT-TTF)Cu(NCS), measured in fields T applied
within the layers, show that the Fermi surface is extended in the interlayer
direction and enable the interlayer transfer integral (
meV) to be deduced. However, the quasiparticle scattering rate is
such that , implying that
-(BEDT-TTF)Cu(NCS) meets the criterion used to identify
interlayer incoherence. The applicability of this criterion to anisotropic
materials is thus shown to be questionable.Comment: 5 pages, 4 figure
A New Heavy-Fermion Superconductor CeIrIn5: Relative of the Cuprates?
CeIrIn5 is a member of a new family of heavy-fermion compounds and has a
Sommerfeld specific heat coefficient of 720 mJ/mol-K2. It exhibits a bulk,
thermodynamic transition to a superconducting state at Tc=0.40 K, below which
the specific heat decreases as T2 to a small residual T-linear value.
Surprisingly, the electrical resistivity drops below instrumental resolution at
a much higher temperature T0=1.2 K. These behaviors are highly reproducible and
field-dependent studies indicate that T0 and Tc arise from the same underlying
electronic structure. The layered crystal structure of CeIrIn5 suggests a
possible analogy to the cuprates in which spin/charge pair correlations develop
well above Tc
Forces between electric charges in motion: Rutherford scattering, circular Keplerian orbits, action-at-a-distance and Newton's third law in relativistic classical electrodynamics
Standard formulae of classical electromagnetism for the forces between
electric charges in motion derived from retarded potentials are compared with
those obtained from a recently developed relativistic classical electrodynamic
theory with an instantaneous inter-charge force. Problems discussed include
small angle Rutherford scattering, Jackson's recent `torque paradox' and
circular Keplerian orbits. Results consistent with special relativity are
obtained only with an instantaneous interaction. The impossiblity of stable
circular motion with retarded fields in either classical electromagnetism or
Newtonian gravitation is demonstrated.Comment: 26 pages, 5 figures. QED and special relativity forbid retarded
electromagnetic forces. See also physics/0501130. V2 has typos corrected,
minor text modifications and updated references. V3 has further typos removed
and added text and reference
Coexistent State of Charge Density Wave and Spin Density Wave in One-Dimensional Quarter Filled Band Systems under Magnetic Fields
We theoretically study how the coexistent state of the charge density wave
and the spin density wave in the one-dimensional quarter filled band is
enhanced by magnetic fields. We found that when the correlation between
electrons is strong the spin density wave state is suppressed under high
magnetic fields, whereas the charge density wave state still remains. This will
be observed in experiments such as the X-ray measurement.Comment: 7 pages, 15 figure
Cyclotron resonance in the layered perovskite superconductor Sr2RuO4
We report a detailed study of the magnetic-field-orientation dependence of
the millimetre-wave magnetoconductivity of the superconductor Sr2RuO4 We find
two harmonic series of cyclotron resonances. We assign the first, corresponding
to a quasiparticle mass of , where is the
free-electron mass, to the Fermi-surface section. We assign the second
series, which contains only odd harmonics, to cyclotron resonance of the
Fermi-surface section, yielding a quasiparticle mass of . A third, single cyclotron resonance, corresponding to a
quasiparticle mass of , is attributed to the
Fermi-surface section. In addition, we find a very strong absorption mode in
the presence of a magnetic field component parallel to the
quasi-two-dimensional planes of the sample. Its dependence on the orientation
of the magnetic field cannot be described in the context of conventional
cyclotron resonance, and the origin of this mode is not yet clear.Comment: Submitted to J. Phys. Cond. Ma
Anomalous behaviour of the in-plane electrical conductivity of the layered superconductor -(BEDT-TTF)Cu(NCS)
The quasiparticle scattering rates in high-quality crystals of the
quasi-two-dimensional superconductor -(BEDT-TTF)Cu(NCS) ~are
studied using the Shubnikov-de Haas effect and MHz penetration-depth
experiments. There is strong evidence that the broadening of the Landau-levels
is primarily caused by spatial inhomogeneities, indicating a quasiparticle
lifetime for the Landau states ps. In contrast to the predictions of
Fermi-liquid theory, the scattering time derived from the intralayer
conductivity is found to be much shorter ( ps)
- …