560 research outputs found
Coagulation Parameters: An Efficient Measure for Predicting the Prognosis and Clinical Management of Patients with COVID-19
Background. COVID-19 is an ongoing global pandemic. Since the detection of the first cases of coronavirus disease 2019 (COVID-19) in Wuhan, China, the current pandemic has affected more than 25.3 million people worldwide. The aim of this study was to evaluate the relationship between coagulation abnormalities and prognosis in a cohort of patients with COVID-19.
Methods. We performed a retrospective cohort study of 3581 patients admitted to Hospital La Paz (Madrid, Spain) due to respiratory infection by severe acute respiratory syndrome coronavirus from the beginning of the current pandemic to 15 July 2020.
Results. Of the 3581 study patients, 48.94% were men, and 19.80% were healthcare workers. The median age was 62 years. Compared with the survivors, the non-survivors had lower prothrombin activity (82.5 (Interquartile range-IQR, 67-95) vs. 95.25 (IQR, 87-104) for non-survivors and survivors, respectively; p < 0.001), higher fibrinogen levels (748.5-IQR, 557-960) vs. 572.75 (IQR, 417-758; p < 0.001), and notably higher D-dimer levels (2329-IQR, 1086.12-5670.40) vs. 635.5 (IQR, 325.5-1194.8); p < 0.001).
Conclusions. The evaluation of coagulation parameters could be an efficient measure for predicting the prognosis and improving the clinical management of patients with COVID-19
Sensitivity of the Cherenkov Telescope Array to a dark matter signal from the Galactic centre
Full list of authors: Acharyya, A.; Adam, R.; Adams, C.; Agudo, I.; Aguirre-Santaella, A.; Alfaro, R.; Alfaro, J.; Alispach, C.; Aloisio, R.; Alves Batista, R.; Amati, L.; Ambrosi, G.; AngĂŒner, E. O.; Antonelli, L. A.; Aramo, C.; Araudo, A.; Armstrong, T.; Arqueros, F.; Asano, K.; AscasĂbar, Y. Ashley, M.; Balazs, C.; Ballester, O.; Baquero Larriva, A.; Barbosa Martins, V.; Barkov, M.; Barres de Almeida, U.; Barrio, J. A.; Bastieri, D.; Becerra, J.; Beck, G.; Becker Tjus, J.; Benbow, W.; Benito, M.; Berge, D.; Bernardini, E.; Bernlöhr, K.; Berti, A.; Bertucci, B.; Beshley, V.; Biasuzzi, B.; Biland, A.; Bissaldi, E.; Biteau, J.; Blanch, O.; Blazek, J.; Bocchino, F.; Boisson, C.; Bonneau Arbeletche, L.; Bordas, P.; Bosnjak, Z.; Bottacini, E.; Bozhilov, V.; Bregeon, J.; Brill, A.; Bringmann, T.; Brown, A. M.; Brun, P.; Brun, F.; Bruno, P.; Bulgarelli, A.; Burton, M.; Burtovoi, A.; Buscemi, M.; Cameron, R.; Capasso, M.; Caproni, A.; Capuzzo-Dolcetta, R.; Caraveo, P.; Carosi, R.; Carosi, A.; Casanova, S.; Cascone, E.; Cassol, F.; Catalani, F.; Cauz, D.; Cerruti, M.; Chadwick, P.; Chaty, S.; Chen, A.; Chernyakova, M.; Chiaro, G.; Chiavassa, A.; Chikawa, M.; Chudoba, J.; Ăolak, M.; Conforti, V.; Coniglione, R.; Conte, F.; Contreras, J. L.; Coronado-Blazquez, J.; Costa, A.; Costantini, H.; Cotter, G.; Cristofari, P.; D'Aimath, A.; D'Ammando, F.; Damone, L. A.; Daniel, M. K.; Dazzi, F.; De Angelis, A.; De Caprio, V.; de CĂĄssia dos Anjos, R.; de Gouveia Dal Pino, E. M.; De Lotto, B.; De Martino, D.; de Oña Wilhelmi, E.; De Palma, F.; de Souza, V.; Delgado, C.; Delgado Giler, A. G.; della Volpe, D.; Depaoli, D.; Di Girolamo, T.; Di Pierro, F.; Di Venere, L.; Diebold, S.; Dmytriiev, A.; DomĂnguez, A.; Donini, A.; Doro, M.; Ebr, J.; Eckner, C.; Edwards, T. D. P.; Ekoume, T. R. N.; ElsĂ€sser, D.; Evoli, C.; Falceta-Goncalves, D.; Fedorova, E.; Fegan, S.; Feng, Q.; Ferrand, G.; Ferrara, G.; Fiandrini, E.; Fiasson, A.; Filipovic, M.; Fioretti, V.; Fiori, M.; Foffano, L.; Fontaine, G.; Fornieri, O.; Franco, F. J.; Fukami, S.; Fukui, Y.; Gaggero, D.; Galaz, G.; Gammaldi, V.; Garcia, E.; Garczarczyk, M.; Gascon, D.; Gent, A.; Ghalumyan, A.; Gianotti, F.; Giarrusso, M.; Giavitto, G.; Giglietto, N.; Giordano, F.; Giuliani, A.; Glicenstein, J.; Gnatyk, R.; Goldoni, P.; GonzĂĄlez, M. M.; Gourgouliatos, K.; Granot, J.; Grasso, D.; Green, J.; Grillo, A.; Gueta, O.; Gunji, S.; Halim, A.; Hassan, T.; Heller, M.; HernĂĄndez Cadena, S.; Hiroshima, N.; Hnatyk, B.; Hofmann, W.; Holder, J.; Horan, D.; Hörandel, J.; Horvath, P.; Hovatta, T.; Hrabovsky, M.; Hrupec, D.; Hughes, G.; Humensky, T. B.; HĂŒtten, M.; Iarlori, M.; Inada, T.; Inoue, S.; Iocco, F.; Iori, M.; Jamrozy, M.; Janecek, P.; Jin, W.; Jouvin, L.; Jurysek, J.; Karukes, E.; KatarzyĆski, K.; Kazanas, D.; Kerszberg, D.; Kherlakian, M. C.; Kissmann, R.; Knödlseder, J.; Kobayashi, Y.; Kohri, K.; Komin, N.; Kubo, H.; Kushida, J.; Lamanna, G.; Lapington, J.; Laporte, P.; Leigui de Oliveira, M. A.; Lenain, J.; Leone, F.; Leto, G.; Lindfors, E.; Lohse, T.; Lombardi, S.; Longo, F.; Lopez, A.; LĂłpez, M.; LĂłpez-Coto, R.; Loporchio, S.; Luque-Escamilla, P. L.; Mach, E.; Maggio, C.; Maier, G.; Mallamaci, M.; Malta Nunes de Almeida, R.; Mandat, D.; Manganaro, M.; Mangano, S.; ManicĂČ, G.; Marculewicz, M.; Mariotti, M.; Markoff, S.; Marquez, P.; MartĂ, J.; Martinez, O.; MartĂnez, M.; MartĂnez, G.; MartĂnez-Huerta, H.; Maurin, G.; Mazin, D.; Mbarubucyeye, J. D.; Medina Miranda, D.; Meyer, M.; Miceli, M.; Miener, T.; Minev, M.; Miranda, J. M.; Mirzoyan, R.; Mizuno, T.; Mode, B.; Moderski, R.; Mohrmann, L.; Molina, E.; Montaruli, T.; Moralejo, A.; Morcuende-Parrilla, D.; Morselli, A.; Mukherjee, R.; Mundell, C.; Nagai, A.; Nakamori, T.; Nemmen, R.; Niemiec, J.; Nieto, D.; NikoĆajuk, M.; Ninci, D.; Noda, K.; Nosek, D.; Nozaki, S.; Ohira, Y.; Ohishi, M.; Ohtani, Y.; Oka, T.; Okumura, A.; Ong, R. A.; Orienti, M.; Orito, R.; Orlandini, M.; Orlando, S.; Orlando, E.; Ostrowski, M.; Oya, I.; Pagano, I.; Pagliaro, A.; Palatiello, M.; Pantaleo, F. R.; Paredes, J. M.; Pareschi, G.; Parmiggiani, N.; Patricelli, B.; PavletiÄ, L.; Pe'er, A.; Pecimotika, M.; PĂ©rez-Romero, J.; Persic, M.; Petruk, O.; Pfrang, K.; Piano, G.; Piatteli, P.; Pietropaolo, E.; Pillera, R.; Pilszyk, B.; Pintore, F.; Pohl, M.; Poireau, V.; Prado, R. R.; Prandini, E.; Prast, J.; Principe, G.; Prokoph, H.; Prouza, M.; Przybilski, H.; PĂŒhlhofer, G.; Pumo, M. L.; Queiroz, F.; Quirrenbach, A.; RainĂČ, S.; Rando, R.; Razzaque, S.; Recchia, S.; Reimer, O.; Reisenegger, A.; Renier, Y.; Rhode, W.; Ribeiro, D.; RibĂł, M.; Richtler, T.; Rico, J.; Rieger, F.; Rinchiuso, L.; Rizi, V.; Rodriguez, J.; Rodriguez Fernandez, G.; Rodriguez Ramirez, J. C.; Rojas, G.; Romano, P.; Romeo, G.; Rosado, J.; Rowell, G.; Rudak, B.; Russo, F.; Sadeh, I.; SĂŠther Hatlen, E.; Safi-Harb, S.; Salesa Greus, F.; Salina, G.; Sanchez, D.; SĂĄnchez-Conde, M.; Sangiorgi, P.; Sano, H.; Santander, M.; Santos, E. M.; Santos-Lima, R.; Sanuy, A.; Sarkar, S.; Saturni, F. G.; Sawangwit, U.; Schussler, F.; Schwanke, U.; Sciacca, E.; Scuderi, S.; Seglar-Arroyo, M.; Sergijenko, O.; Servillat, M.; Seweryn, K.; Shalchi, A.; Sharma, P.; Shellard, R. C.; Siejkowski, H.; Silk, J.; Siqueira, C.; Sliusar, V.; SĆowikowska, A.; Sokolenko, A.; Sol, H.; Spencer, S.; Stamerra, A.; StaniÄ, S.; Starling, R.; Stolarczyk, T.; Straumann, U.; StriĆĄkoviÄ, J.; Suda, Y.; Suomijarvi, T.; Ćwierk, P.; Tavecchio, F.; Taylor, L.; Tejedor, L. A.; Teshima, M.; Testa, V.; Tibaldo, L.; Todero Peixoto, C. J.; Tokanai, F.; Tonev, D.; Tosti, G.; Tosti, L.; Tothill, N.; Truzzi, S.; Travnicek, P.; Vagelli, V.; Vallage, B.; Vallania, P.; van Eldik, C.; Vandenbroucke, J.; Varner, G. S.; Vassiliev, V.; VĂĄzquez Acosta, M.; Vecchi, M.; Ventura, S.; Vercellone, S.; Vergani, S.; Verna, G.; Viana, A.; Vigorito, C. F.; Vink, J.; Vitale, V.; Vorobiov, S.; Vovk, I.; Vuillaume, T.; Wagner, S. J.; Walter, R.; Watson, J.; Weniger, C.; White, R.; White, M.; Wiemann, R.; Wierzcholska, A.; Will, M.; Williams, D. A.; Wischnewski, R.; Yanagita, S.; Yang, L.; Yoshikoshi, T.; Zacharias, M.; Zaharijas, G.; Zakaria, A. A.; Zampieri, L.; Zanin, R.; Zaric, D.; Zavrtanik, M.; Zavrtanik, D.; Zdziarski, A. A.; Zech, A.; Zechlin, H.; Zhdanov, V. I.; Ćœivec, M.-- This is an open access article published by IOP Publishing Ltd on behalf of Sissa Medialab. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.We provide an updated assessment of the power of the Cherenkov Telescope Array (CTA) to search for thermally produced dark matter at the TeV scale, via the associated gamma-ray signal from pair-annihilating dark matter particles in the region around the Galactic centre. We find that CTA will open a new window of discovery potential, significantly extending the range of robustly testable models given a standard cuspy profile of the dark matter density distribution. Importantly, even for a cored profile, the projected sensitivity of CTA will be sufficient to probe various well-motivated models of thermally produced dark matter at the TeV scale. This is due to CTA's unprecedented sensitivity, angular and energy resolutions, and the planned observational strategy. The survey of the inner Galaxy will cover a much larger region than corresponding previous observational campaigns with imaging atmospheric Cherenkov telescopes. CTA will map with unprecedented precision the large-scale diffuse emission in high-energy gamma rays, constituting a background for dark matter searches for which we adopt state-of-the-art models based on current data. Throughout our analysis, we use up-to-date event reconstruction Monte Carlo tools developed by the CTA consortium, and pay special attention to quantifying the level of instrumental systematic uncertainties, as well as background template systematic errors, required to probe thermally produced dark matter at these energies. © 2021 The Author(s).We gratefully acknowledge financial support from the following agencies and organisations: State Committee of Science of Armenia, Armenia; The Australian Research Council, Astronomy Australia Ltd, The University of Adelaide, Australian National University, Monash University, The University of New South Wales, The University of Sydney, Western Sydney University, Australia; Federal Ministry of Education, Science and Research, and Innsbruck University, Austria; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Fundacao de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ), Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Ministry of Science, Technology, Innovations and Communications (MCTIC), and Instituto Serrapilheira, Brasil; Ministry of Education and Science, National RI Roadmap Project DO1-153/28.08.2018, Bulgaria; The Natural Sciences and Engineering Research Council of Canada and the Canadian Space Agency, Canada; CONICYT-Chile grants CATA AFB 170002, ANID PIA/APOYO AFB 180002, ACT 1406, FONDECYT-Chile grants, 1161463, 1170171, 1190886, 1171421, 1170345, 1201582, Gemini-ANID 32180007, Chile; Croatian Science Foundation, Rudjer Boskovic Institute, University of Osijek, University of Rijeka, University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Zagreb, Faculty of Electrical Engineering and Computing, Croatia; Ministry of Education, Youth and Sports, MEYS LM2015046, LM2018105, LTT17006, EU/MEYS CZ.02.1.01/0.0/0.0/16_013/0001403, CZ.02.1.01/0.0/0.0/18_046/0016007 and CZ.02.1.01/0.0/0.0/16_019/0000754, Czech Republic; Academy of Finland (grant nr.317636, 320045, 317383 and 320085), Finland; Ministry of Higher Education and Research, CNRS-INSU and CNRS-IN2P3, CEA-Irfu, ANR, Regional Council Ile de France, Labex ENIGMASS, OSUG2020, P2IO and OCEVU, France; Max Planck Society, BMBF, DESY, Helmholtz Association, Germany; Department of Atomic Energy, Department of Science and Technology, India; Istituto Nazionale di Astrofisica (INAF), Istituto Nazionale di Fisica Nucleare (INFN), MIUR, Istituto Nazionale di Astrofisica (INAF-OABRERA) Grant Fondazione Cariplo/Regione Lombardia ID 2014-1980/RST_ERC, Italy; ICRR, University of Tokyo, JSPS, MEXT, Japan; Netherlands Research School for Astronomy (NOVA), Netherlands Organization for Scientific Research (NWO), Netherlands; University of Oslo, Norway; Ministry of Science and Higher Education, DIR/WK/2017/12, the National Centre for Research and Development and the National Science Centre, UMO-2016/22/M/ST9/00583, Poland; Slovenian Research Agency, grants P1-0031, P1-0385, I0-0033, J1-9146, J1-1700, N1-0111, and the Young Researcher program, Slovenia; South African Department of Science and Technology and National Research Foundation through the South African Gamma-Ray Astronomy Programme, South Africa; The Spanish Ministry of Science and Innovation and the Spanish Research State Agency (AEI) through grants AYA2016-79724-C4-1-P, AYA2016-80889-P, AYA2016-76012-C3-1-P, BES-2016-076342, ESP2017-87055-C2-1-P, FPA2017-82729-C6-1-R, FPA2017-82729-C6-2-R, FPA2017-82729-C6-3-R, FPA2017-82729-C6-4-R, FPA2017-82729-C6-5-R, FPA2017-82729-C6-6-R, PGC2018-095161-B-I00, PGC2018-095512-B-I00; the \Centro de Excelencia Severo Ochoa"program through grants no. SEV-2015-0548, SEV-2016-0597, SEV-2016-0588, SEV-2017-0709; the "Unidad de Excelencia Maria de Maeztu" program through grant no.
MDM-2015-0509; the "Ramon y Cajal" programme through grants RYC-2013-14511, RyC-2013-14660, RYC-2017-22665; and the MultiDark Consolider Network FPA2017-90566-REDC. Atraccion de Talento contract no. 2016-T1/TIC-1542 granted by the Comunidad de Madrid; the "Postdoctoral Junior Leader Fellowship" programme from La Caixa Banking Foundation, grants no. LCF/BQ/LI18/11630014 and LCF/BQ/PI18/11630012; the "Programa Operativo" FEDER2014-2020, Consejeria de Economia y Conocimiento de la Junta de Andalucia (ref. 1257737), PAIDI 2020 (ref. P18-FR-1580), and Universidad de Jaen; the Spanish AEI EQC2018-005094-P FEDER 2014-2020; the European Union's "Horizon 2020" research and innovation programme under Marie Sklodowska-Curie grant agreement no. 665919; and the ESCAPE project with grant no. GA:824064, Spain; Swedish Research Council, Royal Physiographic Society of Lund, Royal Swedish Academy of Sciences, The Swedish National Infrastructure for Computing (SNIC) at Lunarc (Lund), Sweden; State Secretariat for Education, Research and Innovation (SERI) and Swiss National Science Foundation (SNSF), Switzerland; Durham University, Leverhulme Trust, Liverpool University, University of Leicester, University of Oxford, Royal Society, Science and Technology Facilities Council, U.K.; U.S. National Science Foundation, U.S. Department of Energy, Argonne National Laboratory, Barnard College, University of California, University of Chicago, Columbia University, Georgia Institute of Technology, Institute for Nuclear and Particle Astrophysics (INPAC-MRPI program), Iowa State University, the Smithsonian Institution, Washington University McDonnell Center for the Space Sciences, The University of Wisconsin and the Wisconsin Alumni Research Foundation, U.S.A.
The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreements No 262053 and No 317446. This project is receiving funding from the European Union's Horizon 2020 research and innovation programs under agreement No 676134.Peer reviewe
Long-Day Photoperiod Enhances Jasmonic Acid-Related Plant Defense
[EN] Agricultural crops are exposed to a range of daylengths, which act as important environmental cues for the control of developmental processes such as flowering. To explore the additional effects of daylength on plant function, we investigated the transcriptome of Arabidopsis (Arabidopsis thaliana) plants grown under short days (SD) and transferred to long days (LD). Compared with that under SD, the LD transcriptome was enriched in genes involved in jasmonic acid-dependent systemic resistance. Many of these genes exhibited impaired expression induction under LD in the phytochrome A (phyA), cryptochrome 1 (cry1), and cry2 triple photoreceptor mutant. Compared with that under SD, LD enhanced plant resistance to the necrotrophic fungus Bottytis cinerea. This response was reduced in the phyA cry1 cry2 triple mutant, in the constitutive photomorphogenicl (cop1) mutant, in the myc2 mutant, and in mutants impaired in DELLA function. Plants grown under SD had an increased nuclear abundance of COP1 and decreased DELLA abundance, the latter of which was dependent on COP1. We conclude that growth under LD enhances plant defense by reducing COP1 activity and enhancing DELLA abundance and MYC2 expression.This study was supported by a Guggenheim Foundation fellowship (to J.J.C), by Agencia Nacional de Promocion Cientifica y Tecnologica (PICT-2015-1796), by the University of Buenos Aires (20020100100437, to J.J.C.), by the Howard Hughes Medical Institute (J.I.C.), and by the SIGNAT-Research and Innovation Staff Exchange (H2020-MSCA-RISE-2014, to P.D.C., M.A.B., D.A., and J.J.C.).Cagnola, J.; Cerdan, P.; PacĂn, M.; Andrade, A.; RodrĂguez, V.; Zurbriggen, M.; Legris, M.... (2018). Long-Day Photoperiod Enhances Jasmonic Acid-Related Plant Defense. PLANT PHYSIOLOGY. 178(1):163-173. https://doi.org/10.1104/pp.18.00443S163173178
Environmental Particle Emissions due to Automated Drilling of Polypropylene Composites and Nanocomposites Reinforced with Talc, Montmorillonite and Wollastonite
In this study, the effect on nanoparticle emissions due to drilling on Polypropylene (PP) reinforced with 20% talc, 5% montmorillonite (MMT) and 5% Wollastonite (WO) is investigated. The study is the first to explore the nanoparticle release from WO and talc reinforced composites and compares the results to previously researched MMT. With 5% WO, equivalent tensile properties with a 10 % weight reduction were obtained relative to the reference 20% talc sample. The materials were fabricated through injection moulding. The nanorelease studies were undertaken using the controlled drilling methodology for nanoparticle exposure assessment developed within the European Commission funded SIRENA Life 11 ENV/ES/506 project. Measurements were taken using CPC and DMS50 equipment for real-time characterization and measurements. The particle number concentration (of particles <1000nm) and particle size distribution (4.87nm - 562.34nm) of the particles emitted during drilling were evaluated to investigate the effect of the silicate fillers on the particles released. The nano-filled samples exhibited a 33% decrease (MMT sample) or a 30% increase (WO sample) on the average particle number concentration released in comparison to the neat polypropylene sample. The size distribution data displayed a substantial percentage of the particles released from the PP, PP/WO and PP/MMT samples to be between 5-20nm, whereas the PP/talc sample emitted larger particle diameters.The work is funded by and part of the European Commission Life project named Simulation of the release of nanomaterials from consumer products for environmental exposure assessment (SIRENA, Pr. No. LIFE 11 ENV/ES/596). The access and use of the facilities at the Flemish Institute for Technological Research (VITO) was funded by QualityNano Project through Transnational Access (TA Application VITO-TAF-382 and VITO-TAF-500) under the European Commission, Grant Agreement No: INFRA-2010-262163. Kristof is also thankful for partial funding by the School of Engineering at Robert Gordon University for his studentship
The Mass-Metallicity relation explored with CALIFA: I. Is there a dependence on the star formation rate?
We present the results on the study of the global and local M-Z relation
based on the first data available from the CALIFA survey (150 galaxies). This
survey provides integral field spectroscopy of the complete optical extent of
each galaxy (up to 2-3 effective radii), with enough resolution to separate
individual HII regions and/or aggregations. Nearly 3000 individual HII
regions have been detected. The spectra cover the wavelength range between
[OII]3727 and [SII]6731, with a sufficient signal-to-noise to derive the oxygen
abundance and star-formation rate associated with each region. In addition, we
have computed the integrated and spatially resolved stellar masses (and surface
densities), based on SDSS photometric data. We explore the relations between
the stellar mass, oxygen abundance and star-formation rate using this dataset.
We derive a tight relation between the integrated stellar mass and the
gas-phase abundance, with a dispersion smaller than the one already reported in
the literature (0.07 dex). Indeed, this
dispersion is only slightly larger than the typical error derived for our
oxygen abundances. However, we do not find any secondary relation with the
star-formation rate, other than the one induced due to the primary relation of
this quantity with the stellar mass. We confirm the result using the 3000
individual HII regions, for the corresponding local relations.
Our results agree with the scenario in which gas recycling in galaxies, both
locally and globally, is much faster than other typical timescales, like that
of gas accretion by inflow and/or metal loss due to outflows. In essence,
late-type/disk dominated galaxies seem to be in a quasi-steady situation, with
a behavior similar to the one expected from an instantaneous
recycling/closed-box model.Comment: 19 Pages, 8 figures, Accepted for Publishing in Astronomy and
Astrophysics (A&A
CALIFA : a diameter-selected sample for an integral field spectroscopy galaxy survey
JMA acknowledges support from the European Research Council Starting Grant (SEDmorph; P.I. V. Wild).We describe and discuss the selection procedure and statistical properties of the galaxy sample used by the Calar Alto Legacy Integral Field Area (CALIFA) survey, a public legacy survey of 600 galaxies using integral field spectroscopy. The CALIFA "mother sample" was selected from the Sloan Digital Sky Survey (SDSS) DR7 photometric catalogue to include all galaxies with an r-band isophotal major axis between 45 '' and 79 : 2 '' and with a redshift 0 : 005 M-r > -23 : 1 and over a stellar mass range between 10(9.7) and 10(11.4) M-circle dot. In particular, within these ranges, the diameter selection does not lead to any significant bias against - or in favour of - intrinsically large or small galaxies. Only below luminosities of M-r = -19 (or stellar masses <10(9.7) M-circle dot) is there a prevalence of galaxies with larger isophotal sizes, especially of nearly edge-on late-type galaxies, but such galaxies form <10% of the full sample. We estimate volume-corrected distribution functions in luminosities and sizes and show that these are statistically fully compatible with estimates from the full SDSS when accounting for large-scale structure. For full characterization of the sample, we also present a number of value-added quantities determined for the galaxies in the CALIFA sample. These include consistent multi-band photometry based on growth curve analyses; stellar masses; distances and quantities derived from these; morphological classifications; and an overview of available multi-wavelength photometric measurements. We also explore different ways of characterizing the environments of CALIFA galaxies, finding that the sample covers environmental conditions from the field to genuine clusters. We finally consider the expected incidence of active galactic nuclei among CALIFA galaxies given the existing pre-CALIFA data, finding that the final observed CALIFA sample will contain approximately 30 Sey2 galaxies.Peer reviewe
CALIFA, the Calar Alto Legacy Integral Field Area survey: I. Survey presentation
We present here the Calar Alto Legacy Integral Field Area (CALIFA) survey,
which has been designed to provide a first step in this direction.We summarize
the survey goals and design, including sample selection and observational
strategy.We also showcase the data taken during the first observing runs
(June/July 2010) and outline the reduction pipeline, quality control schemes
and general characteristics of the reduced data. This survey is obtaining
spatially resolved spectroscopic information of a diameter selected sample of
galaxies in the Local Universe (0.005< z <0.03). CALIFA has been
designed to allow the building of two-dimensional maps of the following
quantities: (a) stellar populations: ages and metallicities; (b) ionized gas:
distribution, excitation mechanism and chemical abundances; and (c) kinematic
properties: both from stellar and ionized gas components. CALIFA uses the PPAK
Integral Field Unit (IFU), with a hexagonal field-of-view of
\sim1.3\sq\arcmin', with a 100% covering factor by adopting a three-pointing
dithering scheme. The optical wavelength range is covered from 3700 to 7000
{\AA}, using two overlapping setups (V500 and V1200), with different
resolutions: R\sim850 and R\sim1650, respectively. CALIFA is a legacy survey,
intended for the community. The reduced data will be released, once the quality
has been guaranteed. The analyzed data fulfill the expectations of the original
observing proposal, on the basis of a set of quality checks and exploratory
analysis.
We conclude from this first look at the data that CALIFA will be an important
resource for archaeological studies of galaxies in the Local Universe.Comment: 32 pages, 29 figures, Accepted for publishing in Astronomy and
Astrophysic
Towards a combined use of geophysics and remote sensing techniques for the characterization of a singular building: âEl TorreĂłnâ (the tower) at Ulaca oppidum (Solosancho, Ăvila, Spain)
This research focuses on the study of the ruins of a large building known as âEl TorreĂłnâ (the Tower), belonging to the Ulaca oppidum (Solosancho, Province of Ăvila, Spain). Different remote sensing and geophysical approaches have been used to fulfil this objective, providing a better understanding of the buildingâs functionality in this town, which belongs to the Late Iron Age (ca. 300â50 BCE). In this sense, the outer limits of the ruins have been identified using photogrammetry and convergent drone flights. An additional drone flight was conducted in the surrounding area to find additional data that could be used for more global interpretations. Magnetometry was used to analyze the underground bedrock structure and ground penetrating radar (GPR) was employed to evaluate the internal layout of the ruins. The combination of these digital methodologies (surface and underground) has provided a new perspective for the improved interpretation of âEl TorreĂłnâ and its characteristics. Research of this type presents additional guidelines for better understanding of the role of this structure with regards to other buildings in the Ulaca oppidum. The results of these studies will additionally allow archaeologists to better plan future interventions while presenting new data that can be used for the interpretation of this archaeological complex on a larger scale
Symptoms and quality of life in late stage Parkinson syndromes: a longitudinal community study of predictive factors
BACKGROUND
Palliative care is increasingly offered earlier in the cancer trajectory but rarely in Idiopathic Parkinson's Disease(IPD), Progressive Supranuclear Palsy(PSP) or Multiple System Atrophy(MSA). There is little longitudinal data of people with late stage disease to understand levels of need. We aimed to determine how symptoms and quality of life of these patients change over time; and what demographic and clinical factors predicted changes.
METHODS
We recruited 82 patients into a longitudinal study, consenting patients with a diagnosis of IPD, MSA or PSP, stages 3-5 Hoehn and Yahr(H&Y). At baseline and then on up to 3 occasions over one year, we collected self-reported demographic, clinical, symptom, palliative and quality of life data, using Parkinson's specific and generic validated scales, including the Palliative care Outcome Scale (POS). We tested for predictors using multivariable analysis, adjusting for confounders.
FINDINGS
Over two thirds of patients had severe disability, over one third being wheelchair-bound/bedridden. Symptoms were highly prevalent in all conditions - mean (SD) of 10.6(4.0) symptoms. More than 50% of the MSA and PSP patients died over the year. Over the year, half of the patients showed either an upward (worsening, 24/60) or fluctuant (8/60) trajectory for POS and symptoms. The strongest predictors of higher levels of symptoms at the end of follow-up were initial scores on POS (AOR 1.30; 95%CI:1.05-1.60) and being male (AOR 5.18; 95% CI 1.17 to 22.92), both were more predictive than initial H&Y scores.
INTERPRETATION
The findings point to profound and complex mix of non-motor and motor symptoms in patients with late stage IPD, MSA and PSP. Symptoms are not resolved and half of the patients deteriorate. Palliative problems are predictive of future symptoms, suggesting that an early palliative assessment might help screen for those in need of earlier intervention
- âŠ