469 research outputs found

    Deformed PP-waves from the Lunin-Maldacena Background

    Full text link
    In this article we study a pp-wave limit of the Lunin-Maldacena background. We show that the relevant string theory background is a homogeneous pp-wave. We obtain the string spectrum. The dual field theory is a deformation of N=4 super Yang-Mills theory. We have shown that, for a class of operators, at O(g_{YM}^2) and at leading order in N, all contributions to the anomalous dimension come from F-terms. We are able to identify the operator in the deformed super Yang-Mills which is dual to the lowest string mode. By studying the undeformed theory we are able to provide some evidence, directly in the field theory, that a small set of nearly protected operators decouple. We make some comments on operators in the Yang-Mills theory that are dual to excited string modes.Comment: 22 pages, 1 figure; Final version to appear in JHE

    Meson Spectroscopy in AdS/CFT with Flavour

    Full text link
    We compute the meson spectrum of an N=2 super Yang-Mills theory with fundamental matter from its dual string theory on AdS_5 x S_5 with a D7-brane probe. For scalar and vector mesons with arbitrary R-charge the spectrum is computed in closed form by solving the equations for D7-brane fluctuations; for matter with non-zero mass m_q it is discrete, exhibits a mass gap of order m_q / sqrt(g_s N) and furnishes representations of SO(5) even though the manifest global symmetry of the theory is only SO(4). The spectrum of mesons with large spin J is obtained from semiclassical, rotating open strings attached to the D7-brane. It displays Regge-like behaviour for J << sqrt(g_s N), whereas for J >> sqrt(g_s N) it corresponds to that of two non-relativistic quarks bound by a Coulomb potential. Meson interactions, baryons and `giant gauge bosons' are briefly discussed.Comment: LaTeX, 39 pages, 4 figures, uses epsf. v2: typos corrected. references adde

    Entanglement Entropy for Singular Surfaces

    Full text link
    We study entanglement entropy for regions with a singular boundary in higher dimensions using the AdS/CFT correspondence and find that various singularities make new universal contributions. When the boundary CFT has an even spacetime dimension, we find that the entanglement entropy of a conical surface contains a term quadratic in the logarithm of the UV cut-off. In four dimensions, the coefficient of this contribution is proportional to the central charge 'c'. A conical singularity in an odd number of spacetime dimensions contributes a term proportional to the logarithm of the UV cut-off. We also study the entanglement entropy for various boundary surfaces with extended singularities. In these cases, similar universal terms may appear depending on the dimension and curvature of the singular locus.Comment: 66 pages,4 figures. Some typos are removed and a reference is adde

    The alpha-prime stretched horizon in the Heterotic string

    Full text link
    The linear alpha-prime corrections and the field redefinition ambiguities are studied for half-BPS singular backgrounds representing a wrapped fundamental string. It is showed that there exist schemes in which the inclusion of all the linear alpha-prime corrections converts these singular solutions to black holes with a regular horizon for which the modified Hawking-Bekenstein entropy is in agreement with the statistical entropy.Comment: 22 pages JHEP; new discussions and more details added to section

    Work-Unit Absenteeism: Effects of Satisfaction, Commitment, Labor Market Conditions, and Time

    Get PDF
    Prior research is limited in explaining absenteeism at the unit level and over time. We developed and tested a model of unit-level absenteeism using five waves of data collected over six years from 115 work units in a large state agency. Unit-level job satisfaction, organizational commitment, and local unemployment were modeled as time-varying predictors of absenteeism. Shared satisfaction and commitment interacted in predicting absenteeism but were not related to the rate of change in absenteeism over time. Unit-level satisfaction and commitment were more strongly related to absenteeism when units were located in areas with plentiful job alternatives

    Comments on Holographic Entanglement Entropy and RG Flows

    Full text link
    Using holographic entanglement entropy for strip geometry, we construct a candidate for a c-function in arbitrary dimensions. For holographic theories dual to Einstein gravity, this c-function is shown to decrease monotonically along RG flows. A sufficient condition required for this monotonic flow is that the stress tensor of the matter fields driving the holographic RG flow must satisfy the null energy condition over the holographic surface used to calculate the entanglement entropy. In the case where the bulk theory is described by Gauss-Bonnet gravity, the latter condition alone is not sufficient to establish the monotonic flow of the c-function. We also observe that for certain holographic RG flows, the entanglement entropy undergoes a 'phase transition' as the size of the system grows and as a result, evolution of the c-function may exhibit a discontinuous drop.Comment: References adde

    Holographic studies of quasi-topological gravity

    Full text link
    Quasi-topological gravity is a new gravitational theory including curvature-cubed interactions and for which exact black hole solutions were constructed. In a holographic framework, classical quasi-topological gravity can be thought to be dual to the large NcN_c limit of some non-supersymmetric but conformal gauge theory. We establish various elements of the AdS/CFT dictionary for this duality. This allows us to infer physical constraints on the couplings in the gravitational theory. Further we use holography to investigate hydrodynamic aspects of the dual gauge theory. In particular, we find that the minimum value of the shear-viscosity-to-entropy-density ratio for this model is η/s0.4140/(4π)\eta/s \simeq 0.4140/(4\pi).Comment: 45 pages, 6 figures. v2: References adde

    Relational Contracts and Organizational Capabilities

    Get PDF
    A large literature identifies unique organizational capabilities as a potent source of competitive advantage, yet our knowledge of why capabilities fail to diffuse more rapidly—particularly in situations in which competitors apparently have strong incentives to adopt them and a well-developed understanding of how they work—remains incomplete. In this paper we suggest that competitively significant capabilities often rest on managerial practices that in turn rely on relational contracts (i.e., informal agreements sustained by the shadow of the future). We argue that one of the reasons these practices may be difficult to copy is that effective relational contracts must solve the twin problems of credibility and clarity and that although credibility might, in principle, be instantly acquired, clarity may take time to develop and may interact with credibility in complex ways so that relational contracts may often be difficult to build

    Holographic c-theorems in arbitrary dimensions

    Full text link
    We re-examine holographic versions of the c-theorem and entanglement entropy in the context of higher curvature gravity and the AdS/CFT correspondence. We select the gravity theories by tuning the gravitational couplings to eliminate non-unitary operators in the boundary theory and demonstrate that all of these theories obey a holographic c-theorem. In cases where the dual CFT is even-dimensional, we show that the quantity that flows is the central charge associated with the A-type trace anomaly. Here, unlike in conventional holographic constructions with Einstein gravity, we are able to distinguish this quantity from other central charges or the leading coefficient in the entropy density of a thermal bath. In general, we are also able to identify this quantity with the coefficient of a universal contribution to the entanglement entropy in a particular construction. Our results suggest that these coefficients appearing in entanglement entropy play the role of central charges in odd-dimensional CFT's. We conjecture a new c-theorem on the space of odd-dimensional field theories, which extends Cardy's proposal for even dimensions. Beyond holography, we were able to show that for any even-dimensional CFT, the universal coefficient appearing the entanglement entropy which we calculate is precisely the A-type central charge.Comment: 62 pages, 4 figures, few typo's correcte
    corecore