2,377 research outputs found
On the Divergence Phenomenon in Hermite–Fejér Interpolation
AbstractGeneralizing results of L. Brutman and I. Gopengauz (1999, Constr. Approx.15, 611–617), we show that for any nonconstant entire function f and any interpolation scheme on [−1, 1], the associated Hermite–Fejér interpolating polynomials diverge on any infinite subset of C\[−1, 1]. Moreover, it turns out that even for the locally uniform convergence on the open interval ]−1, 1[ it is necessary that the interpolation scheme converges to the arcsine distribution
Quasirelativistic quasilocal finite wave-function collapse model
A Markovian wave function collapse model is presented where the
collapse-inducing operator, constructed from quantum fields, is a manifestly
covariant generalization of the mass density operator utilized in the
nonrelativistic Continuous Spontaneous Localization (CSL) wave function
collapse model. However, the model is not Lorentz invariant because two such
operators do not commute at spacelike separation, i.e., the time-ordering
operation in one Lorentz frame, the "preferred" frame, is not the time-ordering
operation in another frame. However, the characteristic spacelike distance over
which the commutator decays is the particle's Compton wavelength so, since the
commutator rapidly gets quite small, the model is "almost" relativistic. This
"QRCSL" model is completely finite: unlike previous, relativistic, models, it
has no (infinite) energy production from the vacuum state.
QRCSL calculations are given of the collapse rate for a single free particle
in a superposition of spatially separated packets, and of the energy production
rate for any number of free particles: these reduce to the CSL rates if the
particle's Compton wavelength is small compared to the model's distance
parameter. One motivation for QRCSL is the realization that previous
relativistic models entail excitation of nuclear states which exceeds that of
experiment, whereas QRCSL does not: an example is given involving quadrupole
excitation of the Ge nucleus.Comment: 10 pages, to be published in Phys. Rev.
Effective-range approach and scaling laws for electromagnetic strength in neutron-halo nuclei
We study low-lying multipole strength in neutron-halo nuclei. The strength
depends only on a few low-energy constants: the neutron separation energy, the
asymptotic normalization coefficient of the bound state wave function, and the
scattering length that contains the information on the interaction in the
continuum. The shape of the transition probability shows a characteristic
dependence on few scaling parameters and the angular momenta. The total E1
strength is related to the root-mean-square radius of the neutron wave function
in the ground state and shows corresponding scaling properties. We apply our
approach to the E1 strength distribution of 11Be.Comment: 4 pages, 1 figure (modified), additional table, extended discussion
of example, accepted for publication in Phys. Rev. Let
Spin-based quantum gating with semiconductor quantum dots by bichromatic radiation method
A potential scheme is proposed for realizing a two-qubit quantum gate in
semiconductor quantum dots. Information is encoded in the spin degrees of
freedom of one excess conduction electron of each quantum dot. We propose to
use two lasers, radiation two neighboring QDs, and tuned to blue detuning with
respect to the resonant frequencies of individual excitons. The two-qubit phase
gate can be achieved by means of both Pauli-blocking effect and dipole-dipole
coupling between intermediate excitonic states.Comment: Europhysics Letters 66 (2004) 1
Interferometric thermometry of a single sub-Doppler cooled atom
Efficient self-interference of single-photons emitted by a sideband-cooled
Barium ion is demonstrated. First, the technical tools for performing efficient
coupling to the quadrupolar transition of a single Ba ion are
presented. We show efficient Rabi oscillations of the internal state of the ion
using a highly stabilized 1.76 fiber laser resonant with the
S-D transition. We then show sideband cooling of the ion's
motional modes and use it as a means to enhance the interference contrast of
the ion with its mirror-image to up to 90%. Last, we measure the dependence of
the self-interference contrast on the mean phonon number, thereby demonstrating
the potential of the set-up for single-atom thermometry close to the motional
ground state.Comment: 6 pages, 6 figure
Real-time dynamics of lattice gauge theories with a few-qubit quantum computer
Gauge theories are fundamental to our understanding of interactions between
the elementary constituents of matter as mediated by gauge bosons. However,
computing the real-time dynamics in gauge theories is a notorious challenge for
classical computational methods. In the spirit of Feynman's vision of a quantum
simulator, this has recently stimulated theoretical effort to devise schemes
for simulating such theories on engineered quantum-mechanical devices, with the
difficulty that gauge invariance and the associated local conservation laws
(Gauss laws) need to be implemented. Here we report the first experimental
demonstration of a digital quantum simulation of a lattice gauge theory, by
realising 1+1-dimensional quantum electrodynamics (Schwinger model) on a
few-qubit trapped-ion quantum computer. We are interested in the real-time
evolution of the Schwinger mechanism, describing the instability of the bare
vacuum due to quantum fluctuations, which manifests itself in the spontaneous
creation of electron-positron pairs. To make efficient use of our quantum
resources, we map the original problem to a spin model by eliminating the gauge
fields in favour of exotic long-range interactions, which have a direct and
efficient implementation on an ion trap architecture. We explore the Schwinger
mechanism of particle-antiparticle generation by monitoring the mass production
and the vacuum persistence amplitude. Moreover, we track the real-time
evolution of entanglement in the system, which illustrates how particle
creation and entanglement generation are directly related. Our work represents
a first step towards quantum simulating high-energy theories with atomic
physics experiments, the long-term vision being the extension to real-time
quantum simulations of non-Abelian lattice gauge theories
- …