1,704 research outputs found
Fast and dense magneto-optical traps for Strontium
We improve the efficiency of sawtooth-wave-adiabatic-passage (SWAP) cooling
for strontium atoms in three dimensions and combine it with standard
narrow-line laser cooling. With this technique, we create strontium
magneto-optical traps with bosonic Sr (
fermionic Sr) atoms at phase-space densities of
(). Our method is simple to implement and is faster and more
robust than traditional cooling methods.Comment: 9 pages, 6 figure
Motion Tomography of a single trapped ion
A method for the experimental reconstruction of the quantum state of motion
for a single trapped ion is proposed. It is based on the measurement of the
ground state population of the trap after a sudden change of the trapping
potential. In particular, we show how the Q function and the quadrature
distribution can be measured directly. In an example we demonstrate the
principle and analyze the sensibility of the reconstruction process to
experimental uncertainties as well as to finite grid limitations. Our method is
not restricted to the Lamb-Dicke Limit and works in one or more dimensions.Comment: 4 pages, Revtex format, 4 postscript figures, changed typographical
error
State-Dependent Optical Lattices for the Strontium Optical Qubit
We demonstrate state-dependent optical lattices for the Sr optical qubit at
the tune-out wavelength for its ground state. We tightly trap excited state
atoms while suppressing the effect of the lattice on ground state atoms by more
than four orders of magnitude. This highly independent control over the qubit
states removes inelastic excited state collisions as the main obstacle for
quantum simulation and computation schemes based on the Sr optical qubit. Our
results also reveal large discrepancies in the atomic data used to calibrate
the largest systematic effect of Sr optical lattice clocks.Comment: 6 pages, 4 figures + 6 pages supplemental materia
Spin-based quantum gating with semiconductor quantum dots by bichromatic radiation method
A potential scheme is proposed for realizing a two-qubit quantum gate in
semiconductor quantum dots. Information is encoded in the spin degrees of
freedom of one excess conduction electron of each quantum dot. We propose to
use two lasers, radiation two neighboring QDs, and tuned to blue detuning with
respect to the resonant frequencies of individual excitons. The two-qubit phase
gate can be achieved by means of both Pauli-blocking effect and dipole-dipole
coupling between intermediate excitonic states.Comment: Europhysics Letters 66 (2004) 1
New Enhanced Tunneling in Nuclear Processes
The small sub-barrier tunneling probability of nuclear processes can be
dramatically enhanced by collision with incident charged particles.
Semiclassical methods of theory of complex trajectories have been applied to
nuclear tunneling, and conditions for the effects have been obtained. We
demonstrate the enhancement of alpha particle decay by incident proton with
energy of about 0.25 MeV. We show that the general features of this process are
common for other sub-barrier nuclear processes and can be applied to nuclear
fission.Comment: RevTex4, 2 figure
Linear-response theory of spin Seebeck effect in ferromagnetic insulators
We formulate a linear response theory of the spin Seebeck effect, i.e., a
spin voltage generation from heat current flowing in a ferromagnet. Our
approach focuses on the collective magnetic excitation of spins, i.e., magnons.
We show that the linear-response formulation provides us with a qualitative as
well as quantitative understanding of the spin Seebeck effect observed in a
prototypical magnet, yttrium iron garnet.Comment: 6 pages, 3 figures. Added references and revised argument on the
length scales at the end of Sec.
Natural orbital functional theory and pairing correlation effects in electron momentum density
Occupation numbers of natural orbitals capture the physics of strong electron
correlations in momentum space. A Natural Orbital Density Functional Theory
based on the antisymmetrized geminal product provides these occupation numbers
and the corresponding electron momentum density. A practical implementation of
this theory approximates the natural orbitals by the Kohn-Sham orbitals and
uses a mean-field approach to estimate pairing amplitudes leading to
corrections for the independent particle model. The method is applied to weakly
doped \mbox{La_2_4}.Comment: 9 pages, 3 figures. Review paper contribution for the special issue
(V.40, No.3 2014) of Fizika Nizkikh Temperatur on New Trends of Fermiology
(shorter version
A FRET method for investigating dimer/monomer status and conformation of the UVR8 photoreceptor
The photoreceptor UVR8 has a pivotal role in mediating plant responses to UV-B wavelengths. Dimeric UVR8 dissociates into monomers following UV-B photoreception, and there is evidence that this process is accompanied by conformational changes that may facilitate interaction of UVR8 with other proteins to initiate signaling. Hence monitoring UVR8 dimer/monomer status and conformation is key to understanding UVR8 action. Here we have used Fluorescence Resonance Energy Transfer (FRET) to study these processes in both wild-type and mutant UVR8 proteins in vivo. UVR8 was fused to GFP and mCherry at the C- and N-termini, respectively and both the FRET efficiency and loss of GFP fluorescence after photobleaching were measured. In addition, measurements were made for UVR8 fused to either GFP or mCherry to eliminate intra-molecular FRET signals. The results indicate that dissociation of UVR8 dimer to monomer principally accounts for the loss of FRET signal for wild-type UVR8 and there is little evidence of a contribution from conformational change in vivo. Examination of plants expressing UVR8W285F and UVR8D96N,D107N are consistent with these mutant proteins being constitutively dimeric and monomeric, respectively. The methods employed here will be valuable for monitoring UVR8 dimer/monomer status in vivo in relation to signaling, and will facilitate characterization of dimer/monomer status and conformation of further UVR8 mutants
Efimov states and their Fano resonances in a neutron-rich nucleus
Asymmetric resonances in elastic n+C scattering are attributed to
Efimov states of such neutron-rich nuclei, that is, three-body bound states of
the n+n+C system when none of the pairs is bound or some of them only
weakly bound. By fitting to the general resonance shape described by Fano, we
extract resonance position, width, and the "Fano profile index". While Efimov
states have been discussed extensively in many areas of physics, there is only
one very recent experimental observation in trimers of cesium atoms. The
conjunction that we present of the Efimov and Fano phenomena may lead to
experimental realization in nuclei.Comment: 4 double-column pages, 3 figure
Epilepsy syndrome-associated balance dysfunction assessed by static posturography
AbstractPurposeTo compare subclinical balance dysfunction in patients with various epilepsy syndromes with apparently healthy subjects.MethodsTwenty-seven patients with localization-related epilepsy (LRE), 19 with primary generalized epilepsy (PGE), who had no subjective complaints of impaired balance and no abnormal neurologic findings on examination, and 22 apparently healthy subjects, underwent static posturography using the Posture Scale Analyzer (PSA) system.ResultsSway index was higher in patients compared to healthy subjects in all tests, significant for single leg stance (p=0.005). Patients with PGE had a higher sway index compared to patients with LRE in six of the tests, also significant for single leg stance (p=0.027). This difference was not affected by the type of AED treatment or disease duration.ConclusionPosturography can improve balance function assessment in patients with epilepsy, demonstrate subclinical impairment in seemingly asymptomatic patients, and further characterize balance deficits in different epilepsy syndromes
- …