18 research outputs found

    19th century real analysis, forward and backward

    Full text link
    19th century real analysis received a major impetus from Cauchy's work. Cauchy mentions variable quantities, limits, and infinitesimals, but the meaning he attached to these terms is not identical to their modern meaning. Some Cauchy historians work in a conceptual scheme dominated by an assumption of a teleological nature of the evolution of real analysis toward a preordained outcome. Thus, Gilain and Siegmund-Schultze assume that references to limite in Cauchy's work necessarily imply that Cauchy was working with an Archi-medean continuum, whereas infinitesimals were merely a convenient figure of speech, for which Cauchy had in mind a complete justification in terms of Archimedean limits. However, there is another formalisation of Cauchy's procedures exploiting his limite, more consistent with Cauchy's ubiquitous use of infinitesimals, in terms of the standard part principle of modern infinitesimal analysis. We challenge a misconception according to which Cauchy was allegedly forced to teach infinitesimals at the Ecole Polytechnique. We show that the debate there concerned mainly the issue of rigor, a separate one from infinitesimals. A critique of Cauchy's approach by his contemporary de Prony sheds light on the meaning of rigor to Cauchy and his contemporaries. An attentive reading of Cauchy's work challenges received views on Cauchy's role in the history of analysis, and indicates that he was a pioneer of infinitesimal techniques as much as a harbinger of the Epsilontik.Comment: 28 pages, to appear in Antiquitates Mathematica

    Procedures of Leibnizian infinitesimal calculus: An account in three modern frameworks

    Full text link
    Recent Leibniz scholarship has sought to gauge which foundational framework provides the most successful account of the procedures of the Leibnizian calculus (LC). While many scholars (e.g., Ishiguro, Levey) opt for a default Weierstrassian framework, Arthur compares LC to a non-Archimedean framework SIA (Smooth Infinitesimal Analysis) of Lawvere-Kock-Bell. We analyze Arthur's comparison and find it rife with equivocations and misunderstandings on issues including the non-punctiform nature of the continuum, infinite-sided polygons, and the fictionality of infinitesimals. Rabouin and Arthur claim that Leibniz considers infinities as contradictory, and that Leibniz' definition of incomparables should be understood as nominal rather than as semantic. However, such claims hinge upon a conflation of Leibnizian notions of bounded infinity and unbounded infinity, a distinction emphasized by early Knobloch. The most faithful account of LC is arguably provided by Robinson's framework. We exploit an axiomatic framework for infinitesimal analysis called SPOT (conservative over ZF) to provide a formalisation of LC, including the bounded/unbounded dichotomy, the assignable/inassignable dichotomy, the generalized relation of equality up to negligible terms, and the law of continuity.Comment: 52 pages, to appear in British Journal for the History of Mathematic

    Cauchy, infinitesimals and ghosts of departed quantifiers

    Get PDF
    Procedures relying on infinitesimals in Leibniz, Euler and Cauchy have been interpreted in both a Weierstrassian and Robinson's frameworks. The latter provides closer proxies for the procedures of the classical masters. Thus, Leibniz's distinction between assignable and inassignable numbers finds a proxy in the distinction between standard and nonstandard numbers in Robinson's framework, while Leibniz's law of homogeneity with the implied notion of equality up to negligible terms finds a mathematical formalisation in terms of standard part. It is hard to provide parallel formalisations in a Weierstrassian framework but scholars since Ishiguro have engaged in a quest for ghosts of departed quantifiers to provide a Weierstrassian account for Leibniz's infinitesimals. Euler similarly had notions of equality up to negligible terms, of which he distinguished two types: geometric and arithmetic. Euler routinely used product decompositions into a specific infinite number of factors, and used the binomial formula with an infinite exponent. Such procedures have immediate hyperfinite analogues in Robinson's framework, while in a Weierstrassian framework they can only be reinterpreted by means of paraphrases departing significantly from Euler's own presentation. Cauchy gives lucid definitions of continuity in terms of infinitesimals that find ready formalisations in Robinson's framework but scholars working in a Weierstrassian framework bend over backwards either to claim that Cauchy was vague or to engage in a quest for ghosts of departed quantifiers in his work. Cauchy's procedures in the context of his 1853 sum theorem (for series of continuous functions) are more readily understood from the viewpoint of Robinson's framework, where one can exploit tools such as the pointwise definition of the concept of uniform convergence. Keywords: historiography; infinitesimal; Latin model; butterfly modelComment: 45 pages, published in Mat. Stu
    corecore