3 research outputs found

    A face-to-face comparison of claudin-5 transduced human brain endothelial (hCMEC/D3) cells with porcine brain endothelial cells as blood–brain barrier models for drug transport studies

    No full text
    Background!#!Predictive in vitro models of the human blood-brain barrier (BBB) are essential in early drug discovery and development. Among available immortalized human brain capillary endothelial cell lines (BCECs), the hCMEC/D3 cell line has become the most widely used in vitro BBB model. However, monolayers of hCMEC/D3 cells form only moderately restrictive barriers, most likely because the major tight junction protein, claudin-5, is markedly downregulated. Thus, hCMEC/D3 monolayers cannot be used for vectorial drug transport experiments, which is a major disadvantage of this model.!##!Methods!#!Here we transduced hCMEC/D3 cells with a claudin-5 plasmid and compared the characteristics of these cells with those of hCMEC/D3 wildtype cells and primary cultured porcine BCECs.!##!Results!#!The claudin-5 transduced hCMEC/D3 exhibited expression levels (and junctional localization) of claudin-5 similar to those of primary cultured porcine BCECs. The transduced cells exhibited increased TEER values (211 Ω cm!##!Conclusions!#!The claudin-5 transduced hCMEC/D3 cells provide a tool to studying the contribution of claudin-5 to barrier tightness and how this can be further enhanced by additional transfections or other manipulations of this widely used in vitro model of the BBB

    Redox-Sensitive Structure and Function of the First Extracellular Loop of the Cell–Cell Contact Protein Claudin-1: Lessons from Molecular Structure to Animals

    No full text
    The paracellular cleft within epithelia/endothelia is sealed by tight junction (TJ) proteins. Their extracellular loops (ECLs) are assumed to control paracellular permeability and are targets of pathogenes. We demonstrated that claudin-1 is crucial for paracellular tightening. Its ECL1 is essential for the sealing and contains two cysteines conserved throughout all claudins. AIMS: We prove the hypothesis that this cysteine motif forms a redox-sensitive intramolecular disulfide bridge and, hence, the claudin-1-ECL1 constitutes a functional structure which is associated to ECLs of this and other TJ proteins. RESULTS: The structure and function of claudin-1-ECL1 was elucidated by investigating sequences of this ECL as synthetic peptides, C1C2, and as recombinant proteins, and exhibited a β-sheet binding surface flanked by an α-helix. These sequences bound to different claudins, their ECL1, and peptides with nanomolar binding constants. C-terminally truncated C1C2 (-4aaC) opened cellular barriers and the perineurium. Recombinant ECL1 formed oligomers, and bound to claudin-1 expressing cells. Oligomerization and claudin association were abolished by reducing agents, indicating intraloop disulfide bridging and redox sensitivity. INNOVATION: The structural and functional model based on our in vitro and in vivo investigations suggested that claudin-1-ECL1 constitutes a functional and ECL-binding β-sheet, stabilized by a shielded and redox-sensitive disulfide bond. CONCLUSION: Since the β-sheet represents a consensus sequence of claudins and further junctional proteins, a general structural feature is implied. Therefore, our model is of general relevance for the TJ assembly in normal and pathological conditions. C1C2-4aaC is a new drug enhancer that is used to improve pharmacological treatment through tissue barriers
    corecore