4,806 research outputs found

    Small Scale Anisotropies of UHECRs from Super-Heavy Halo Dark Matter

    Get PDF
    The decay of very heavy metastable relics of the Early Universe can produce ultra-high energy cosmic rays (UHECRs) in the halo of our own Galaxy. In this model, no Greisen-Zatsepin-Kuzmin cutoff is expected because of the short propagation distances. We show here that, as a consequence of the hierarchical build up of the halo, this scenario predicts the existence of small scale anisotropies in the arrival directions of UHECRs, in addition to a large scale anisotropy, known from previous studies. We also suggest some other observable consequences of this scenario which will be testable with upcoming experiments, as Auger, EUSO and OWL.Comment: Contribution given at ICRC 2001 - August 7-15, 2001 - Hambur

    Instabilities of noncommutative two dimensional BF model

    Full text link
    The noncommutative extension of two dimensional BF model is considered. It is shown that the realization of the noncommutative map via the Groenewold-Moyal star product leads to instabilities of the action, hence to a non renormalizable theory.Comment: 9 page

    Gamma-Ray Constraints on Neutralino Dark Matter Clumps in the Galactic Halo

    Full text link
    According to high resolution cold dark matter (CDM) simulations, large virialized halos are formed through the constant merging of smaller halos formed at earlier times. In particular, the halo of our Galaxy may have hundreds of dark matter clumps. The annihilation of dark matter particles such as the neutralino in these clumps generates Îł\gamma-ray fluxes that can potentially be detected by future experiments such as GLAST. We find that, depending on the parameters of the clump density profile and on the distribution of clumps in the Galactic halo, the contribution to the diffuse Îł\gamma-ray background from clumps can constrain the properties of neutralinos such as the mass and annihilation cross section. We model the density profile of clumps by three representative dark matter profiles: singular isothermal spheres (SIS), Moore profiles, and Navarro, Frenk and White (NFW) density profiles and calculate the spectrum and angular distribution in the sky of the Îł\gamma-ray flux due to neutralino annihilation in the clumpy halo of the Galaxy. The calculations are carried out in the context of two different scenarios for the distribution of clumps in the Galaxy and their concentrations, which result in very different conclusions.Comment: 24 pages, 7 ps fig

    The origin of the positron excess in cosmic rays

    Full text link
    We show that the positron excess measured by the PAMELA experiment in the region between 10 and 100 GeV may well be a natural consequence of the standard scenario for the origin of Galactic cosmic rays. The 'excess' arises because of positrons created as secondary products of hadronic interactions inside the sources, but the crucial physical ingredient which leads to a natural explanation of the positron flux is the fact that the secondary production takes place in the same region where cosmic rays are being accelerated. Therefore secondary positrons (and electrons) participate in the acceleration process and turn out to have a very flat spectrum, which is responsible, after propagation in the Galaxy, for the observed positron 'excess'. This effect cannot be avoided though its strength depends on the values of the environmental parameters during the late stages of evolution of supernova remnants.Comment: 4 Pages, 2 figures. Some references and discussion adde

    Cosmic Ray acceleration and Balmer emission from SNR 0509-67.5

    Full text link
    Context: Observation of Balmer lines from the region around the forward shock of supernova remnants may provide precious information on the shock dynamics and on the efficiency of particle acceleration at the shock. Aims: We calculate the Balmer line emission and the shape of the broad Balmer line for parameter values suitable for SNR 0509-67.5, as a function of the cosmic ray acceleration efficiency and of the level of thermal equilibration between electrons and protons behind the shock. This calculation aims at using the width of the broad Balmer line emission to infer the cosmic ray acceleration efficiency in this remnant. Methods: We use the recently developed non-linear theory of diffusive shock acceleration in the presence of neutrals. The semi-analytical approach that we developed includes a description of magnetic field amplification as due to resonant streaming instability, the dynamical reaction of both accelerated particles and turbulent magnetic field on the shock, and all channels of interaction between neutral atoms and background plasma that change the shock dynamics. Results: We achieve a quantitative assessment of the CR acceleration efficiency in SNR 0509-67.5 as a function of the shock velocity and different levels of electron-proton thermalization in the shock region. If the shock moves faster than ~4500 km/s, one can conclude that particle acceleration must be taking place with efficiency of several tens of percent. For lower shock velocity the evidence for particle acceleration becomes less clear because of the uncertainty in the electron-ion equilibration downstream. We also discuss the role of future measurements of the narrow Balmer line.Comment: 7 pages, 5 figure. Accepted for publication in Astronomy & Astrophysic
    • …
    corecore