475 research outputs found

    Lepton Acceleration in Pulsar Wind Nebulae

    Full text link
    Pulsar Wind Nebulae (PWNe) act as calorimeters for the relativistic pair winds emanating from within the pulsar light cylinder. Their radiative dissipation in various wavebands is significantly different from that of their pulsar central engines: the broadband spectra of PWNe possess characteristics distinct from those of pulsars, thereby demanding a site of lepton acceleration remote from the pulsar magnetosphere. A principal candidate for this locale is the pulsar wind termination shock, a putatively highly-oblique, ultra-relativistic MHD discontinuity. This paper summarizes key characteristics of relativistic shock acceleration germane to PWNe, using predominantly Monte Carlo simulation techniques that compare well with semi-analytic solutions of the diffusion-convection equation. The array of potential spectral indices for the pair distribution function is explored, defining how these depend critically on the parameters of the turbulent plasma in the shock environs. Injection efficiencies into the acceleration process are also addressed. Informative constraints on the frequency of particle scattering and the level of field turbulence are identified using the multiwavelength observations of selected PWNe. These suggest that the termination shock can be comfortably invoked as a principal injector of energetic leptons into PWNe without resorting to unrealistic properties for the shock layer turbulence or MHD structure.Comment: 19 pages, 5 figures, invited review to appear in Proc. of the inaugural ICREA Workshop on "The High-Energy Emission from Pulsars and their Systems" (2010), eds. N. Rea and D. Torres, (Springer Astrophysics and Space Science series

    Weak reaction freeze-out constraints on primordial magnetic fields

    Get PDF
    We explore constraints on the strength of the primordial magnetic field based upon the weak reaction freeze-out in the early universe. We find that limits on the strength of the magnetic field found in other works are recovered simply by examining the temperature at which the rate of weak reactions drops below the rate of universal expansion (Γw\Gamma_{w} \le H). The temperature for which the n/pn/p ratio at freeze-out leads to acceptable helium production implies limits on the magnetic field. This simplifies the application of magnetic fields to other cosmological variants of the standard big-bang. As an illustration we also consider effects of neutrino degeneracy on the allowed limits to the primordial magnetic field.Comment: Submitted to Phys. Rev. D., 6 pages, 2 figure

    On passion and moral behavior in achievement settings: The mediating role of pride

    Get PDF
    The Dualistic Model of Passion (Vallerand et al., 2003) distinguishes two types of passion: harmonious passion (HP) and obsessive passion (OP) that predict adaptive and less adaptive outcomes, respectively. In the present research, we were interested in understanding the role of passion in the adoption of moral behavior in achievement settings. It was predicted that the two facets of pride (authentic and hubristic; Tracy & Robins, 2007) would mediate the passion-moral behavior relationship. Specifically, because people who are passionate about a given activity are highly involved in it, it was postulated that they should typically do well and thus experience high levels of pride when engaged in the activity. However, it was also hypothesized that while both types of passion should be conducive to authentic pride, only OP should lead to hubristic pride. Finally, in line with past research on pride (Carver, Sinclair, & Johnson, 2010; Tracy et al., 2009), only hubristic pride was expected to negatively predict moral behavior, while authentic pride was expected to positively predict moral behavior. Results of two studies conducted with paintball players (N=163, Study 1) and athletes (N=296, Study 2) supported the proposed model. Future research directions are discussed in light of the Dualistic Model of Passion

    uPA is upregulated by high dose celecoxib in women at increased risk of developing breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While increased urokinase-type plasminogen activator (uPA) expression in breast cancer tissue is directly associated with poor prognosis, recent evidence suggests that uPA overexpression may suppress tumor growth and prolong survival. Celecoxib has been shown to have antiangiogenic and antiproliferative properties. We sought to determine if uPA, PA inhibitor (PAI)-1 and prostaglandin (PG)E<sub>2 </sub>expression in nipple aspirate fluid (NAF) and uPA and PGE<sub>2 </sub>expression in plasma were altered by celecoxib dose and concentration in women at increased breast cancer risk.</p> <p>Methods</p> <p>NAF and plasma samples were collected in women at increased breast cancer risk before and 2 weeks after taking celecoxib 200 or 400 mg twice daily (bid). uPA, PAI-1 and PGE<sub>2 </sub>were measured before and after intervention.</p> <p>Results</p> <p>Celecoxib concentrations trended higher in women taking 400 mg (median 1025.0 ng/mL) compared to 200 mg bid (median 227.3 ng/mL), and in post- (534.6 ng/mL) compared to premenopausal (227.3 ng/mL) women. In postmenopausal women treated with the higher (400 mg bid) celecoxib dose, uPA concentrations increased, while PAI-1 and PGE<sub>2 </sub>decreased. In women taking the higher dose, both PAI-1 (r = -.97, p = .0048) and PGE<sub>2 </sub>(r = -.69, p = .019) in NAF and uPA in plasma (r = .45, p = .023) were correlated with celecoxib concentrations.</p> <p>Conclusion</p> <p>Celecoxib concentrations after treatment correlate inversely with the change in PAI-1 and PGE<sub>2 </sub>in the breast and directly with the change in uPA in the circulation. uPA upregulation, in concert with PAI-1 and PGE<sub>2 </sub>downregulation, may have a cancer preventive effect.</p

    Clusters of galaxies : observational properties of the diffuse radio emission

    Get PDF
    Clusters of galaxies, as the largest virialized systems in the Universe, are ideal laboratories to study the formation and evolution of cosmic structures...(abridged)... Most of the detailed knowledge of galaxy clusters has been obtained in recent years from the study of ICM through X-ray Astronomy. At the same time, radio observations have proved that the ICM is mixed with non-thermal components, i.e. highly relativistic particles and large-scale magnetic fields, detected through their synchrotron emission. The knowledge of the properties of these non-thermal ICM components has increased significantly, owing to sensitive radio images and to the development of theoretical models. Diffuse synchrotron radio emission in the central and peripheral cluster regions has been found in many clusters. Moreover large-scale magnetic fields appear to be present in all galaxy clusters, as derived from Rotation Measure (RM) studies. Non-thermal components are linked to the cluster X-ray properties, and to the cluster evolutionary stage, and are crucial for a comprehensive physical description of the intracluster medium. They play an important role in the cluster formation and evolution. We review here the observational properties of diffuse non-thermal sources detected in galaxy clusters: halos, relics and mini-halos. We discuss their classification and properties. We report published results up to date and obtain and discuss statistical properties. We present the properties of large-scale magnetic fields in clusters and in even larger structures: filaments connecting galaxy clusters. We summarize the current models of the origin of these cluster components, and outline the improvements that are expected in this area from future developments thanks to the new generation of radio telescopes.Comment: Accepted for the publication in The Astronomy and Astrophysics Review. 58 pages, 26 figure

    Cosmic rays and molecular clouds

    Full text link
    This paper deals with the cosmic-ray penetration into molecular clouds and with the related gamma--ray emission. High energy cosmic rays interact with the dense gas and produce neutral pions which in turn decay into two gamma rays. This makes molecular clouds potential sources of gamma rays, especially if they are located in the vicinity of a powerful accelerator that injects cosmic rays in the interstellar medium. The amplitude and duration in time of the cosmic--ray overdensity around a given source depend on how quickly cosmic rays diffuse in the turbulent galactic magnetic field. For these reasons, gamma-ray observations of molecular clouds can be used both to locate the sources of cosmic rays and to constrain the properties of cosmic-ray diffusion in the Galaxy.Comment: To appear in the proceedings of the San Cugat Forum on Astrophysics 2012, 27 pages, 10 figure

    XIPE: the X-ray Imaging Polarimetry Explorer

    Full text link
    X-ray polarimetry, sometimes alone, and sometimes coupled to spectral and temporal variability measurements and to imaging, allows a wealth of physical phenomena in astrophysics to be studied. X-ray polarimetry investigates the acceleration process, for example, including those typical of magnetic reconnection in solar flares, but also emission in the strong magnetic fields of neutron stars and white dwarfs. It detects scattering in asymmetric structures such as accretion disks and columns, and in the so-called molecular torus and ionization cones. In addition, it allows fundamental physics in regimes of gravity and of magnetic field intensity not accessible to experiments on the Earth to be probed. Finally, models that describe fundamental interactions (e.g. quantum gravity and the extension of the Standard Model) can be tested. We describe in this paper the X-ray Imaging Polarimetry Explorer (XIPE), proposed in June 2012 to the first ESA call for a small mission with a launch in 2017 but not selected. XIPE is composed of two out of the three existing JET-X telescopes with two Gas Pixel Detectors (GPD) filled with a He-DME mixture at their focus and two additional GPDs filled with pressurized Ar-DME facing the sun. The Minimum Detectable Polarization is 14 % at 1 mCrab in 10E5 s (2-10 keV) and 0.6 % for an X10 class flare. The Half Energy Width, measured at PANTER X-ray test facility (MPE, Germany) with JET-X optics is 24 arcsec. XIPE takes advantage of a low-earth equatorial orbit with Malindi as down-link station and of a Mission Operation Center (MOC) at INPE (Brazil).Comment: 49 pages, 14 figures, 6 tables. Paper published in Experimental Astronomy http://link.springer.com/journal/1068

    Chlamydophila pneumoniae induces a sustained airway hyperresponsiveness and inflammation in mice

    Get PDF
    Background: It has been reported that Chlamydophila (C.) pneumoniae is involved in the initiation and promotion of asthma and chronic obstructive pulmonary diseases (COPD). Surprisingly, the effect of C. pneumoniae on airway function has never been investigated.Methods: In this study, mice were inoculated intranasally with C. pneumoniae (strain AR39) on day 0 and experiments were performed on day 2, 7, 14 and 21.Results: We found that from day 7, C. pneumoniae infection causes both a sustained airway hyperresponsiveness and an inflammation. Interferon-γ (IFN-γ) and macrophage inflammatory chemokine-2 (MIP-2) levels in bronchoalveolar lavage (BAL)-fluid were increased on all experimental days with exception of day 7 where MIP-2 concentrations dropped to control levels. In contrast, tumor necrosis factor-α (TNF-α) levels were only increased on day 7. From day 7 to 21 epithelial damage and secretory cell hypertrophy was observed. It is suggested that, the inflammatory cells/mediators, the epithelial damage and secretory cell hypertrophy contribute to initiation of airway hyperresponsiveness.Conclusion: Our study demonstrates for the first time that C. pneumoniae infection can modify bronchial responsiveness. This has clinical implications, since additional changes in airway responsiveness and inflammation-status induced by this bacterium may worsen and/or provoke breathlessness in asthma and COPD
    corecore