3,094 research outputs found
Gauge Symmetry and Consistent Spin-Two Theories
We study Lagrangians with the minimal amount of gauge symmetry required to
propagate spin-two particles without ghosts or tachyons. In general, these
Lagrangians also have a scalar mode in their spectrum. We find that, in two
cases, the symmetry can be enhanced to a larger group: the whole group of
diffeomorphisms or a enhancement involving a Weyl symmetry. We consider the
non-linear completions of these theories. The intuitive completions yield the
usual scalar-tensor theories except for the pure spin-two cases, which
correspond to two inequivalent Lagrangians giving rise to Einstein's equations.
A more constructive self-consistent approach yields a background dependent
Lagrangian.Comment: 7 pages, proceedings of IRGAC'06; typo correcte
Exploring singlet deflection of gauge mediation
We embed the Next-to Minimal Supersymmetric Standard Model into gauge
mediation of supersymmetry breaking and study the phenomenology of scenarios
where the gauge-mediation contributions to soft parameters are deflected by
superpotential interactions of the gauge singlet with the messenger fields and
the Higgs doublets. This kind of models provide a satisfactory solution to the
mu-b_mu problem of gauge mediation, compatible with the adequate pattern of
electroweak symmetry breaking and a realistic spectrum with supersymmetric
partners at the TeV scale without requiring a significant fine tuning.Comment: Latex 18 pages, 4 eps figures. Minor corrections, version published
in Phys. Rev.
Cosmological constraints on Lorentz violating dark energy
The role of Lorentz invariance as a fundamental symmetry of nature has been
lately reconsidered in different approaches to quantum gravity. It is thus
natural to study whether other puzzles of physics may be solved within these
proposals. This may be the case for the cosmological constant problem. Indeed,
it has been shown that breaking Lorentz invariance provides Lagrangians that
can drive the current acceleration of the universe without experiencing large
corrections from ultraviolet physics. In this work, we focus on the simplest
model of this type, called ThetaCDM, and study its cosmological implications in
detail. At the background level, this model cannot be distinguished from
LambdaCDM. The differences appear at the level of perturbations. We show that
in ThetaCDM, the spectrum of CMB anisotropies and matter fluctuations may be
affected by a rescaling of the gravitational constant in the Poisson equation,
by the presence of extra contributions to the anisotropic stress, and finally
by the existence of extra clustering degrees of freedom. To explore these
modifications accurately, we modify the Boltzmann code CLASS. We then use the
parameter inference code Monte Python to confront ThetaCDM with data from
WMAP-7, SPT and WiggleZ. We obtain strong bounds on the parameters accounting
for deviations from LambdaCDM. In particular, we find that the discrepancy
between the gravitational constants appearing in the Poisson and Friedmann
equations is constrained at the level 1.8%.Comment: 17 pages, 5 figure
Hidden Lorentz symmetry of the Hořava–Lifshitz gravity
In this Letter it is shown that the Hořava–Lifshitz gravity theory admits Lorentz symmetry preserving preferred global time foliation of the spacetime
Indirect Effect of Supersymmetric Triplets in Stop Decays
We study an extension of the minimal supersymmetric standard model with a
zero hypercharge triplet, and the effect that such a particle has on stop
decays. This model has the capability of predicting a 125.5 GeV Higgs even in
the presence of light stops and it can modify the diphoton rate by means of the
extra charged fermion triplet coupled to the Higgs. Working in the limit where
the scalar triplet decouples, and with small values of mA, we find that the
fermion triplet can greatly affect the branching ratios of the stops, even in
the absence of a direct stop-triplet coupling. We compare the triplet extension
with the MSSM and discuss how the additional fields affect the search for stop
pair production.Comment: pdfLateX, 16 pages, 7 figures, 2 tables, Typos, minor changes.
Version published in JHE
Bigravity and Lorentz-violating Massive Gravity
Bigravity is a natural arena where a non-linear theory of massive gravity can
be formulated. If the interaction between the metrics and is
non-derivative, spherically symmetric exact solutions can be found. At large
distances from the origin, these are generically Lorentz-breaking bi-flat
solutions (provided that the corresponding vacuum energies are adjusted
appropriately). The spectrum of linearized perturbations around such
backgrounds contains a massless as well as a massive graviton, with {\em two}
physical polarizations each. There are no propagating vectors or scalars, and
the theory is ghost free (as happens with certain massive gravities with
explicit breaking of Lorentz invariance). At the linearized level, corrections
to GR are proportional to the square of the graviton mass, and so there is no
vDVZ discontinuity. Surprisingly, the solution of linear theory for a static
spherically symmetric source does {\em not} agree with the linearization of any
of the known exact solutions. The latter coincide with the standard
Schwarzschild-(A)dS solutions of General Relativity, with no corrections at
all. Another interesting class of solutions is obtained where and are
proportional to each other. The case of bi-de Sitter solutions is analyzed in
some detail.Comment: 25 pages. v3 Typos corrected, references added. v4 Introduction
extende
Electroweak Limits on General New Vector Bosons
We study extensions of the Standard Model with general new vector bosons. The
full Standard Model gauge symmetry is used to classify the extra vectors and
constrain their couplings. We derive the corresponding effective Lagrangian,
valid at energies lower than the mass of the extra vectors, and use it to
extract limits from electroweak precision observables, including LEP 2 data. We
consider both universal and nonuniversal couplings to fermions. We study the
interplay of several extra vectors, which can have the effect of opening new
regions in parameter space. In particular, it allows to explain the anomaly in
the bottom forward-backward asymmetry with perturbative couplings. Finally, we
analyze quantitatively the implications for the Higgs mass.Comment: Latex 50 pages, 12 eps figures. Typos fixed, comments and references
adde
Looking for signals beyond the neutrino Standard Model
Any new neutrino physics at the TeV scale must include a suppression
mechanism to keep its contribution to light neutrino masses small enough. We
review some seesaw model examples with weakly broken lepton number, and comment
on the expected effects at large colliders and in neutrino oscillations.Comment: LaTeX 10 pages, 9 PS figures. Contribution to the Proceedings of the
XXXI International School of Theoretical Physics "Matter To The Deepest"
Ustron, Poland, September 5-11, 2007. Typos correcte
- …