249 research outputs found

    The Sloan Digital Sky Survey: The Cosmic Spectrum and Star-Formation History

    Get PDF
    We present a determination of the `Cosmic Optical Spectrum' of the Universe, i.e. the ensemble emission from galaxies, as determined from the red-selected Sloan Digital Sky Survey main galaxy sample and compare with previous results of the blue-selected 2dF Galaxy Redshift Survey. Broadly we find good agreement in both the spectrum and the derived star-formation histories. If we use a power-law star-formation history model where star-formation rate (1+z)β\propto (1+z)^\beta out to z=1, then we find that β\beta of 2 to 3 is still the most likely model and there is no evidence for current surveys missing large amounts of star formation at high redshift. In particular `Fossil Cosmology' of the local universe gives measures of star-formation history which are consistent with direct observations at high redshift. Using the photometry of SDSS we are able to derive the cosmic spectrum in absolute units (i.e.WA˚ W \AA^{-1}Mpc Mpc^{-3})at25A˚resolutionandfindgoodagreementwithpublishedbroadbandluminositydensities.ForaSalpeterIMFthebestfitstellarmass/lightratiois3.77.5) at 2--5\AA resolution and find good agreement with published broad-band luminosity densities. For a Salpeter IMF the best fit stellar mass/light ratio is 3.7--7.5 \Msun/\Lsunintherband(correspondingto in the r-band (corresponding to \omstars h = 0.00250.0055)andfromboththestellaremissionhistoryandtheH--0.0055) and from both the stellar emission history and the H\alphaluminositydensityindependentlywefindacosmologicalstarformationrateof0.030.04h luminosity density independently we find a cosmological star-formation rate of 0.03--0.04 h \Msunyr yr^{-1}Mpc Mpc^{-3}$ today.Comment: 17 pages, 11 figures, ApJ in press (April 10th 2003

    NYU-VAGC: a galaxy catalog based on new public surveys

    Full text link
    Here we present the New York University Value-Added Galaxy Catalog (NYU-VAGC), a catalog of local galaxies (mostly below a redshift of about 0.3) based on a set of publicly-released surveys (including the 2dFGRS, 2MASS, PSCz, FIRST, and RC3) matched to the Sloan Digital Sky Survey (SDSS) Data Release 2. Excluding areas masked by bright stars, the photometric sample covers 3514 square degrees and the spectroscopic sample covers 2627 square degrees (with about 85% completeness). Earlier, proprietary versions of this catalog have formed the basis of many SDSS investigations of the power spectrum, correlation function, and luminosity function of galaxies. We calculate and compile derived quantities (for example, K-corrections and structural parameters for galaxies). The SDSS catalog presented here is photometrically recalibrated, reducing systematic calibration errors across the sky from about 2% to about 1%. We include an explicit description of the geometry of the catalog, including all imaging and targeting information as a function of sky position. Finally, we have performed eyeball quality checks on a large number of objects in the catalog in order to flag deblending and other errors. This catalog is complementary to the SDSS Archive Servers, in that NYU-VAGC's calibration, geometrical description, and conveniently small size are specifically designed for studying galaxy properties and large-scale structure statistics using the SDSS spectroscopic catalog.Comment: accepted by AJ; full resolution version available at http://sdss.physics.nyu.edu/vagc/va_paper.ps; data files available at http://sdss.physics.nyu.edu/vagc

    North Carolina macular dystrophy (MCDR1) caused by a novel tandem duplication of the PRDM13 gene

    Get PDF
    PURPOSE: To identify the underlying cause of disease in a large family with North Carolina macular dystrophy (NCMD). METHODS: A large four-generation family (RFS355) with an autosomal dominant form of NCMD was ascertained. Family members underwent comprehensive visual function evaluations. Blood or saliva from six affected family members and three unaffected spouses was collected and DNA tested for linkage to the MCDR1 locus on chromosome 6q12. Three affected family members and two unaffected spouses underwent whole exome sequencing (WES) and subsequently, custom capture of the linkage region followed by next-generation sequencing (NGS). Standard PCR and dideoxy sequencing were used to further characterize the mutation. RESULTS: Of the 12 eyes examined in six affected individuals, all but two had Gass grade 3 macular degeneration features. Large central excavation of the retinal and choroid layers, referred to as a macular caldera, was seen in an age-independent manner in the grade 3 eyes. The calderas are unique to affected individuals with MCDR1. Genome-wide linkage mapping and haplotype analysis of markers from the chromosome 6q region were consistent with linkage to the MCDR1 locus. Whole exome sequencing and custom-capture NGS failed to reveal any rare coding variants segregating with the phenotype. Analysis of the custom-capture NGS sequencing data for copy number variants uncovered a tandem duplication of approximately 60 kb on chromosome 6q. This region contains two genes, CCNC and PRDM13. The duplication creates a partial copy of CCNC and a complete copy of PRDM13. The duplication was found in all affected members of the family and is not present in any unaffected members. The duplication was not seen in 200 ethnically matched normal chromosomes. CONCLUSIONS: The cause of disease in the original family with MCDR1 and several others has been recently reported to be dysregulation of the PRDM13 gene, caused by either single base substitutions in a DNase 1 hypersensitive site upstream of the CCNC and PRDM13 genes or a tandem duplication of the PRDM13 gene. The duplication found in the RFS355 family is distinct from the previously reported duplication and provides additional support that dysregulation of PRDM13, not CCNC, is the cause of NCMD mapped to the MCDR1 locus

    The Clustering of Luminous Red Galaxies in the Sloan Digital Sky Survey Imaging Data

    Get PDF
    We present the 3D real space clustering power spectrum of a sample of \~600,000 luminous red galaxies (LRGs) measured by the Sloan Digital Sky Survey (SDSS), using photometric redshifts. This sample of galaxies ranges from redshift z=0.2 to 0.6 over 3,528 deg^2 of the sky, probing a volume of 1.5 (Gpc/h)^3, making it the largest volume ever used for galaxy clustering measurements. We measure the angular clustering power spectrum in eight redshift slices and combine these into a high precision 3D real space power spectrum from k=0.005 (h/Mpc) to k=1 (h/Mpc). We detect power on gigaparsec scales, beyond the turnover in the matter power spectrum, on scales significantly larger than those accessible to current spectroscopic redshift surveys. We also find evidence for baryonic oscillations, both in the power spectrum, as well as in fits to the baryon density, at a 2.5 sigma confidence level. The statistical power of these data to constrain cosmology is ~1.7 times better than previous clustering analyses. Varying the matter density and baryon fraction, we find \Omega_M = 0.30 \pm 0.03, and \Omega_b/\Omega_M = 0.18 \pm 0.04, The detection of baryonic oscillations also allows us to measure the comoving distance to z=0.5; we find a best fit distance of 1.73 \pm 0.12 Gpc, corresponding to a 6.5% error on the distance. These results demonstrate the ability to make precise clustering measurements with photometric surveys (abridged).Comment: 23 pages, 27 figures, submitted to MNRA

    Ameliorating Systematic Uncertainties in the Angular Clustering of Galaxies: A Study using SDSS-III

    Get PDF
    We investigate the effects of potential sources of systematic error on the angular and photometric redshift, z_phot, distributions of a sample of redshift 0.4 < z < 0.7 massive galaxies whose selection matches that of the Baryon Oscillation Spectroscopic Survey (BOSS) constant mass sample. Utilizing over 112,778 BOSS spectra as a training sample, we produce a photometric redshift catalog for the galaxies in the SDSS DR8 imaging area that, after masking, covers nearly one quarter of the sky (9,913 square degrees). We investigate fluctuations in the number density of objects in this sample as a function of Galactic extinction, seeing, stellar density, sky background, airmass, photometric offset, and North/South Galactic hemisphere. We find that the presence of stars of comparable magnitudes to our galaxies (which are not traditionally masked) effectively remove area. Failing to correct for such stars can produce systematic errors on the measured angular auto-correlation function, w, that are larger than its statistical uncertainty. We describe how one can effectively mask for the presence of the stars, without removing any galaxies from the sample, and minimize the systematic error. Additionally, we apply two separate methods that can be used to correct the systematic errors imparted by any parameter that can be turned into a map on the sky. We find that failing to properly account for varying sky background introduces a systematic error on w. We measure w, in four z_phot slices of width 0.05 between 0.45 < z_phot < 0.65 and find that the measurements, after correcting for the systematic effects of stars and sky background, are generally consistent with a generic LambdaCDM model, at scales up to 60 degrees. At scales greater than 3 degrees and z_phot > 0.5, the magnitude of the corrections we apply are greater than the statistical uncertainty in w.Comment: Accepted by MNRA

    The Sloan Digital Sky Survey Quasar Catalog IV. Fifth Data Release

    Get PDF
    We present the fourth edition of the Sloan Digital Sky Survey (SDSS) Quasar Catalog. The catalog contains 77,429 objects; this is an increase of over 30,000 entries since the previous edition. The catalog consists of the objects in the SDSS Fifth Data Release that have luminosities larger than M_i = -22.0 (in a cosmology with H_0 = 70 km/s/Mpc, Omega_M = 0.3, and Omega_Lambda = 0.7) have at least one emission line with FWHM larger than 1000 km/s, or have interesting/complex absorption features, are fainter than i=15.0, and have highly reliable redshifts. The area covered by the catalog is 5740 sq. deg. The quasar redshifts range from 0.08 to 5.41, with a median value of 1.48; the catalog includes 891 quasars at redshifts greater than four, of which 36 are at redshifts greater than five. Approximately half of the catalog quasars have i < 19; nearly all have i < 21. For each object the catalog presents positions accurate to better than 0.2 arcsec. rms per coordinate, five-band (ugriz) CCD-based photometry with typical accuracy of 0.03 mag, and information on the morphology and selection method. The catalog also contains basic radio, near-infrared, and X-ray emission properties of the quasars, when available, from other large-area surveys. The calibrated digital spectra cover the wavelength region 3800--9200A at a spectral resolution of ~2000. The spectra can be retrieved from the public database using the information provided in the catalog. The average SDSS colors of quasars as a function of redshift, derived from the catalog entries, are presented in tabular form. Approximately 96% of the objects in the catalog were discovered by the SDSS.Comment: 37 pages, Accepted for publication in A

    Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample

    Get PDF
    The spectroscopic Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) galaxy sample represents the final set of galaxies observed using the original SDSS target selection criteria. We analyse the clustering of galaxies within this sample, including both the Luminous Red Galaxy (LRG) and Main samples, and also include the 2-degree Field Galaxy Redshift Survey (2dFGRS) data. Baryon Acoustic Oscillations are observed in power spectra measured for different slices in redshift; this allows us to constrain the distance--redshift relation at multiple epochs. We achieve a distance measure at redshift z=0.275, of r_s(z_d)/D_V(0.275)=0.1390+/-0.0037 (2.7% accuracy), where r_s(z_d) is the comoving sound horizon at the baryon drag epoch, D_V(z)=[(1+z)^2D_A^2cz/H(z)]^(1/3), D_A(z) is the angular diameter distance and H(z) is the Hubble parameter. We find an almost independent constraint on the ratio of distances D_V(0.35)/D_V(0.2)=1.736+/-0.065, which is consistent at the 1.1sigma level with the best fit Lambda-CDM model obtained when combining our z=0.275 distance constraint with the WMAP 5-year data. The offset is similar to that found in previous analyses of the SDSS DR5 sample, but the discrepancy is now of lower significance, a change caused by a revised error analysis and a change in the methodology adopted, as well as the addition of more data. Using WMAP5 constraints on Omega_bh^2 and Omega_ch^2, and combining our BAO distance measurements with those from the Union Supernova sample, places a tight constraint on Omega_m=0.286+/-0.018 and H_0 = 68.2+/-2.2km/s/Mpc that is robust to allowing curvature and non-Lambda dark energy. This result is independent of the behaviour of dark energy at redshifts greater than those probed by the BAO and supernova measurements. (abridged)Comment: 22 pages, 16 figures, minor changes to match version published in MNRA

    Optical and Radio Properties of Extragalactic Sources Observed by the FIRST and SDSS Surveys

    Full text link
    We discuss the optical and radio properties of 30,000 FIRST sources positionally associated with an SDSS source in 1230 deg2^2 of sky. The majority (83%) of the FIRST sources identified with an SDSS source brighter than r=21 are optically resolved. We estimate an upper limit of 5% for the fraction of quasars with broad-band optical colors indistinguishable from those of stars. The distribution of quasars in the radio flux -- optical flux plane supports the existence of the "quasar radio-dichotomy"; 8% of all quasars with i<18.5 are radio-loud and this fraction seems independent of redshift and optical luminosity. The radio-loud quasars have a redder median color by 0.08 mag, and a 3 times larger fraction of objects with red colors. FIRST galaxies represent 5% of all SDSS galaxies with r<17.5, and 1% for r<20, and are dominated by red galaxies. Magnitude and redshift limited samples show that radio galaxies have a different optical luminosity distribution than non-radio galaxies selected by the same criteria; when galaxies are further separated by their colors, this result remains valid for both blue and red galaxies. The distributions of radio-to-optical flux ratio are similar for blue and red galaxies in redshift-limited samples; this similarity implies that the difference in their luminosity functions, and resulting selection effects, are the dominant cause for the preponderance of red radio galaxies in flux-limited samples. We confirm that the AGN-to-starburst galaxy number ratio increases with radio flux, and find that radio emission from AGNs is more concentrated than radio emission from starburst galaxies (abridged).Comment: submitted to AJ, color gif figures, PS figures available from [email protected]

    The properties and luminosity function of extremely low luminosity galaxies

    Full text link
    We examine a sample of low redshift (10 < d < 150 Mpc) galaxies including galaxies with r-band absolute magnitudes as faint as -12.5 (for h=1), selected from the Sloan Digital Sky Survey Data Release 2 (SDSS). The sample is unique in containing galaxies of extremely low luminosities in a wide range of environments, selected with uniform and well-understood criteria. We present the luminosity function as well as the broad-band properties of low luminosity galaxies in this sample. A Schechter function is an insufficient parameterization of the r-band luminosity function; there is an upturn in the slope at low luminosities. The resulting slope at low luminosities in this sample is around -1.3. However, we almost certainly miss a large number of galaxies at very low luminosities due to low surface brightness selection effects, and we estimate that the true low luminosity slope may be as steep or steeper than -1.5. The results here are consistent with previous SDSS results and, in the g-band, roughly consistent with the results of the Two degree Field Galaxy Redshift Survey. Extremely low luminosity galaxies are predominantly blue, low surface brightness, exponential disks.Comment: accepted by ApJ; full resolution figures available at http://sdss.physics.nyu.edu/vagc/lowlum.ps.gz; associated data files available at http://sdss.physics.nyu.edu/vagc/lowz.htm

    Cosmological Constraints from the Clustering of the Sloan Digital Sky Survey DR7 Luminous Red Galaxies

    Get PDF
    We present the power spectrum of the reconstructed halo density field derived from a sample of Luminous Red Galaxies (LRGs) from the Sloan Digital Sky Survey Seventh Data Release (DR7). The halo power spectrum has a direct connection to the underlying dark matter power for k <= 0.2 h/Mpc, well into the quasi-linear regime. This enables us to use a factor of ~8 more modes in the cosmological analysis than an analysis with kmax = 0.1 h/Mpc, as was adopted in the SDSS team analysis of the DR4 LRG sample (Tegmark et al. 2006). The observed halo power spectrum for 0.02 < k < 0.2 h/Mpc is well-fit by our model: chi^2 = 39.6 for 40 degrees of freedom for the best fit LCDM model. We find \Omega_m h^2 * (n_s/0.96)^0.13 = 0.141^{+0.009}_{-0.012} for a power law primordial power spectrum with spectral index n_s and \Omega_b h^2 = 0.02265 fixed, consistent with CMB measurements. The halo power spectrum also constrains the ratio of the comoving sound horizon at the baryon-drag epoch to an effective distance to z=0.35: r_s/D_V(0.35) = 0.1097^{+0.0039}_{-0.0042}. Combining the halo power spectrum measurement with the WMAP 5 year results, for the flat LCDM model we find \Omega_m = 0.289 +/- 0.019 and H_0 = 69.4 +/- 1.6 km/s/Mpc. Allowing for massive neutrinos in LCDM, we find \sum m_{\nu} < 0.62 eV at the 95% confidence level. If we instead consider the effective number of relativistic species Neff as a free parameter, we find Neff = 4.8^{+1.8}_{-1.7}. Combining also with the Kowalski et al. (2008) supernova sample, we find \Omega_{tot} = 1.011 +/- 0.009 and w = -0.99 +/- 0.11 for an open cosmology with constant dark energy equation of state w.Comment: 26 pages, 19 figures, submitted to MNRAS. The power spectrum and a module to calculate the likelihoods is publicly available at http://lambda.gsfc.nasa.gov/toolbox/lrgdr/ . v2 fixes abstract formatting issu
    corecore