128 research outputs found

    Myocardial perfusion reserve compared with peripheral perfusion reserve: A [13N]ammonia PET study

    Get PDF
    INTRODUCTION: [13N]ammonia PET allows quantification of myocardial perfusion. The similarity between peripheral flow and myocardial perfusion is unclear. We compared perfusion flow in the myocardium with the upper limb during rest and adenosine stress [13N]ammonia PET to establish whether peripheral perfusion reserve (PPR) correlates with MPR. METHODS: [13N]ammonia myocardial perfusion PET-scans of 58 patients were evaluated (27 men, 31 women, age 64 ± 13 years) and were divided in four subgroups: patients with coronary artery disease (CAD, n = 15), cardiac syndrome X (SX, n = 14), idiopathic dilating cardiomyopathy (DCM, n = 16), and normal controls (NC, n = 13). Peripheral limb perfusion was measured in the muscular tissue of the proximal upper limb and quantified through a 2-tissue-compartment model and the PPR was calculated (stress/rest ratio). MPR was also calculated by a 2-tissue-compartment model. The PPR results were compared with the MPR findings. RESULTS: Mean myocardial perfusion increased significantly in all groups as evidenced by the MPR (CAD 1.99 ± 0.47; SX 1.39 ± 0.31; DCM 1.72 ± 0.69; NC 2.91 ± 0.78). Mean peripheral perfusion also increased but not significantly and accompanied with great variations within and between groups (mean PPR: CAD 1.30 ± 0.79; SX 1.36 ± 0.71; DCM 1.60 ± 1.22; NC 1.27 ± 0.63). The mean difference between PPR and MPR for all subpopulations varied widely. No significant correlations in flow reserve were found between peripheral and myocardial microcirculatory beds in any of the groups (Total group: r = -0.07, SEE = 0.70, CAD: r = 0.14, SEE = 0.48, SX: r = 0.17, SEE = 0.30, DCM: r = -0.11, SEE = 0.71, NC: r = -0.19, SEE = 0.80). CONCLUSION: No correlations between myocardial and peripheral perfusion (reserve) were found in different patient populations in the same PET session. This suggests a functional difference between peripheral and myocardial flow in the response to intravenously administered adenosine stress

    Ischemic patterns assessed by positron emission tomography predict adverse outcome in patients with idiopathic dilated cardiomyopathy

    Get PDF
    Although patients with idiopathic dilated cardiomyopathy (DCM) have no coronary artery disease, regional impairment of myocardial perfusion combined with preserved metabolism has been found using positron emission tomography (PET). Our aim was to assess the prognostic relevance of PET-mismatch between stress myocardial perfusion and glucose uptake on clinical outcome in DCM. In 24 patients with DCM who underwent both myocardial perfusion and metabolism PET scanning, "mismatch" was assessed and the association with clinical outcome (hospitalization, mortality, and heart transplantation) was investigated. Mismatch was found in 16 patients (66.7%). Univariate analysis showed that the presence of mismatch was associated with adverse outcome (P = 0.03). After adjustment for sex and age, the association remained significant with an adjusted relative risk of 10.4 (95% CI 1.1-103; P = 0.04) for death, heart transplant, or hospitalization. Univariate analysis also showed that a higher extent of mismatch was significantly associated with adverse outcome (P = 0.02). After adjusting for sex and age, the association remained significant with an adjusted relative risk of 6.5 [95% CI 1.2-36; P = 0.03] for death, heart transplantation, or hospitalization. PET stress perfusion-metabolism mismatch, indicative for ischemia, is frequently found in DCM patients and related to a poorer outcome

    Current views on neurostimulation in the treatment of cardiac ischemic syndromes

    No full text
    Most clinicians are still unacquainted with the beneficial effects of neurostimulation as an additional therapeutic strategy for severe angina pectoris. Patients with therapeutically refractory angina pectoris suffer from chest discomfort during minimal exercise, despite maximal tolerated antianginal drug therapy (at least 2 out of a beta-blocker, calcium-antagonist or long-acting nitrate). In these patients, revascularization procedures, such as a percutaneous transluminal coronary angioplasty or coronary artery bypass surgery, are often technically impossible because of diffuse coronary artery disease or should be withheld as a consequence of absolute contraindications such as severe left ventricular dysfunction. All patients have inoperable multivessel disease, experienced one or more myocardial infarctions, and were treated by earlier invasive interventions. This group of patients are severely physically and psychologically disabled by their intractable angina pectoris. Available published data and the neurostimulation experience of the authors are reviewed in relation to the treatment of cardiac ischemic syndromes. We conclude that neurostimulation is an effective therapeutic adjuvant for patients with severe angina pectoris unresponsive to standard treatment. This treatment modality appears to be safe, and a promising tool for other ischemic cardiac syndromes
    corecore