86 research outputs found

    Clinical evaluation of a dynamic test for lateral ankle ligament laxity

    Get PDF
    The dynamic anterior ankle tester (DAAT) has shown a good reliability in testing anterior talar translation in earlier studies. The goal of the present study was first to evaluate the reliability of the DAAT in a clinical setting and second to analyze its ability to detect increased ligament laxity. In 39 patients with unilateral chronic lateral ankle instability, the anterior talar translation of the affected and non-affected side was measured pre and postoperatively using the DAAT, Telos stress radiographs, and the manual anterior drawer test. In contrast to both other tests, the DAAT was not able to accurately detect increased ligament laxity preoperatively or decreased laxity of the affected ankle postoperatively. The DAAT showed a low sensitivity to change (the difference between the mean pre and postoperative value) and a low reliability compared to both other tests. There were no correlations between the three tests. In conclusion, the DAAT showed a low reliability in effectively testing lateral ankle ligament laxity in a clinical setting. This is in contrast to earlier evaluations

    Relationship between drug burden and physical and cognitive functions in a sample of nursing home patients with dementia

    Get PDF
    Purpose: The Drug Burden Index (DBI) is a tool to quantify the anticholinergic and sedative load of drugs. Establishing functional correlates of the DBI could optimize drug prescribing in patients with dementia. In this cross-sectional study, we determined the relationship between DBI and cognitive and physical functions in a sample of patients with dementia. Methods: Using performance-based tests, we measured physical and cognitive functions in 140 nursing home patients aged over 70 with all-cause dementia. We also determined anticholinergic DBI (AChDBI) and sedative DBI (SDBI) separately and in combination as total drug burden (TDB). Results: Nearly one half of patients (48%) used at least one DBI-contributing drug. In 33% of the patients, drug burden was moderate (0 < TDB < 1) whereas in 15%, drug burden was high (TDB ≥ 1). Multivariate models yielded no associations between TDB, AChDBI, and SDBI, and physical or cognitive function (all p > 0.05). Conclusions: A lack of association between drug burden and physical or cognitive function in this sample of patients with dementia could imply that drug prescribing is more optimal for patients with dementia compared with healthy older populations. However, such an interpretation of the data warrants scrutiny as several dementia-related factors may confound the results of the study

    The influence of foot geometry on the calcaneal osteotomy angle based on two-dimensional static force analyses

    Get PDF
    Background: Malalignment of the hindfoot can be corrected with a calcaneal osteotomy (CO). A well-selected osteotomy angle in the sagittal plane will reduce the shear force in the osteotomy plane while walking. The purpose was to determine the presence of a relationship between the foot geometry and loading of the calcaneus, which influences the choice of the preferred CO angle. Methods A static free body force analysis was made of the posterior calcaneal fragment in the second half of the stance phase to determine the main loads: the plantar apeunorosis (PA) and Achilles tendon (AT). The third load is on the osteotomy surface which should be oriented such that the shear component of the force is zero. The force direction of the PA and AT was measured on 58 MRIs of the foot, and the force ratio between both structures was taken from the literature. In addition the PA-to-AT force ratio was estimated for different foot geometries to identify the relationship. Results: Based on the wish to minimize the shear force during walking, a mean CO angle was determined to be 33º (SD8) relative to the foot sole. In pes planus foot geometry, the angle should be higher than the mean. In pes cavus foot geometry, the angle should be smaller. Conclusion: Foot geometry, in particular the relative foot heights is a determinant for the individual angle in performing the sliding calcaneal osteotomy. It is recommended to take into account the foot geometry (arch) when deciding on the CO angle for hindfoot correction.Biomechanical EngineeringMechanical, Maritime and Materials Engineerin

    Development of a planar multi-body model of the human knee joint

    Get PDF
    The aim of this work is to develop a dynamic model for the biological human knee joint. The model is formulated in the framework of multibody systems methodologies, as a system of two bodies, the femur and the tibia. For the purpose of describing the formulation, the relative motion of the tibia with respect to the femur is considered. Due to their higher stiffness compared to that of the articular cartilages, the femur and tibia are considered as rigid bodies. The femur and tibia cartilages are considered to be deformable structures with specific material characteristics. The rotation and gliding motions of the tibia relative to the femur can not be modeled with any conventional kinematic joint, but rather in terms of the action of the knee ligaments and potential contact between the bones. Based on medical imaging techniques, the femur and tibia profiles in the sagittal plane are extracted and used to define the interface geometric conditions for contact. When a contact is detected, a continuous non-linear contact force law is applied which calculates the contact forces developed at the interface as a function of the relative indentation between the two bodies. The four basic cruciate and collateral ligaments present in the knee are also taken into account in the proposed knee joint model, which are modeled as non-linear elastic springs. The forces produced in the ligaments, together with the contact forces, are introduced into the system’s equations of motion as external forces. In addition, an external force is applied on the center of mass of the tibia, in order to actuate the system mimicking a normal gait motion. Finally, numerical results obtained from computational simulations are used to address the assumptions and procedures adopted in this study.Fundação para a Ciência e a Tecnologia (FCT

    Novel metallic implantation technique for osteochondral defects of the medial talar dome: A cadaver study

    Get PDF
    BACKGROUND AND PURPOSE: A metallic inlay implant (HemiCAP) with 15 offset sizes has been developed for the treatment of localized osteochondral defects of the medial talar dome. The aim of this study was to test the following hypotheses: (1) a matching offset size is available for each talus, (2) the prosthetic device can be reproducibly implanted slightly recessed in relation to the talar cartilage level, and (3) with this implantation level, excessive contact pressures on the opposite tibial cartilage are avoided. METHODS: The prosthetic device was implanted in 11 intact fresh-frozen human cadaver ankles, aiming its surface 0.5 mm below cartilage level. The implantation level was measured at 4 margins of each implant. Intraarticular contact pressures were measured before and after implantation, with compressive forces of 1,000-2,000 N and the ankle joint in plantigrade position, 10 dorsiflexion, and 14 plantar flexion. RESULTS: There was a matching offset size available for each specimen. The mean implantation level was 0.45 (SD 0.18) mm below the cartilage surface. The defect area accounted for a median of 3% (0.02-18) of the total ankle contact pressure before implantation. This was reduced to 0.1% (0.02-13) after prosthetic implantation. INTERPRETATION: These results suggest that the implant can be applied clinically in a safe way, with appropriate offset sizes for various talar domes and without excessive pressure on the opposite cartilag

    Less Anterior Knee Pain with a Mobile-bearing Prosthesis Compared with a Fixed-bearing Prosthesis

    Get PDF
    Anterior knee pain is one of the major short-term complaints after TKA. Since the introduction of the mobile-bearing TKA, numerous studies have attempted to confirm the theoretical advantages of a mobile-bearing TKA over a fixed-bearing TKA but most show little or no actual benefits. The concept of self-alignment for the mobile bearing suggests the posterior-stabilized mobile-bearing TKA would provide a lower incidence of anterior knee pain compared with a fixed-bearing TKA. We therefore asked whether the posterior-stabilized mobile-bearing knee would in fact reduce anterior knee pain. We randomized 103 patients scheduled for cemented three-component TKA for osteoarthrosis in a prospective, double-blind clinical trial. With a 1-year followup, more patients experienced persistent anterior knee pain in the posterior-stabilized fixed-bearing group (10 of 53, 18.9%) than in the posterior-stabilized mobile-bearing group (two of 47, 4.3%). No differences were observed for range of motion, visual analog scale for pain, Oxford 12-item questionnaire, SF-36, or the American Knee Society score. The posterior-stabilized mobile-bearing knee therefore seems to provide a short-term advantage compared with the posterior-stabilized fixed-bearing knee

    Description of the attachment geometry of the anteromedial and posterolateral bundles of the ACL from arthroscopic perspective for anatomical tunnel placement

    Get PDF
    The anterior cruciate ligament (ACL) consists of an anteromedial bundle (AMB) and a posterolateral bundle (PLB). A reconstruction restoring the functional two-bundled nature should be able to approximate normal ACL function better than the most commonly used single-bundle reconstructions. Accurate tunnel positioning is important, but difficult. The purpose of this study was to provide a geometric description of the centre of the attachments relative to arthroscopically visible landmarks. The AMB and PLB attachment sites in 35 dissected cadaver knees were measured with a 3D system, as were anatomical landmarks of femur and tibia. At the femur, the mean ACL centre is positioned 7.9 ± 1.4 mm (mean ± 1 SD) shallow, along the notch roof, from the most lateral over-the-top position at the posterior edge of the intercondylar notch and from that point 4.0 ± 1.3 mm from the notch roof, low on the surface of the lateral condyle wall. The mean AMB centre is at 7.2 ± 1.8 and 1.4 ± 1.7 mm, and the mean PLB centre at 8.8 ± 1.6 and 6.7 ± 2.0 mm. At the tibia, the mean ACL centre is positioned 5.1 ± 1.7 mm lateral of the medial tibial spine and from that point 9.8 ± 2.1 mm anterior. The mean AMB centre is at 3.0 ± 1.6 and 9.4 ± 2.2 mm, and the mean PLB centre at 7.2 ± 1.8 and 10.1 ± 2.1 mm. The ACL attachment geometry is well defined relative to arthroscopically visible landmarks with respect to the AMB and PLB. With simple guidelines for the surgeon, the attachments centres can be found during arthroscopic single-bundle or double-bundle reconstructions

    Barriers to Predicting the Mechanisms and Risk Factors of Non-Contact Anterior Cruciate Ligament Injury

    Get PDF
    High incidences of non-contact anterior cruciate ligament (ACL) injury, frequent requirements for ACL reconstruction, and limited understanding of ACL mechanics have engendered considerable interest in quantifying the ACL loading mechanisms. Although some progress has been made to better understand non-contact ACL injuries, information on how and why non-contact ACL injuries occur is still largely unavailable. In other words, research is yet to yield consensus on injury mechanisms and risk factors. Biomechanics, video analysis, and related study approaches have elucidated to some extent how ACL injuries occur. However, these approaches are limited because they provide estimates, rather than precise measurements of knee - and more specifically ACL - kinematics at the time of injury. These study approaches are also limited in their inability to simultaneously capture many of the contributing factors to injury

    Pulsed electromagnetic fields after arthroscopic treatment for osteochondral defects of the talus: double-blind randomized controlled multicenter trial

    Get PDF
    Background. Osteochondral talar defects usually affect athletic patients. The primary surgical treatment consists of arthroscopic debridement and microfracturing. Although this is mostly successful, early sport resumption is difficult to achieve, and it can take up to one year to obtain clinical improvement. Pulsed electromagnetic fields (PEMFs) may be effective for talar defects after arthroscopic treatment by promoting tissue healing, suppressing inflammation, and relieving pain. We hypothesize that PEMF-treatment compared to sham-treatment after arthroscopy will lead to earlier resumption of sports, and aim at 25% increase in patients that resume sports. Methods/Design. A prospective, double-blind, randomized, placebo-controlled trial (RCT) will be conducted in five centers throughout the Netherlands and Belgium. 68 patients will be randomized to either active PEMF-treatment or sham-treatment for 60 days, four hours daily. They will be followed-up for one year. The combined primary outcome measures are (a) the percentage of patients that resume and maintain sports, and (b) the time to resumption of sports, defined by the Ankle Activity Score. Secondary outcome measures include resumption of work, subjective and objective scoring systems (American Orthopaedic Foot and Ankle Society Ankle-Hindfoot Scale, Foot Ankle Outcome Score, Numeric Rating Scales of pain and satisfaction, EuroQol-5D), and computed tomography. Time to resumption of sports will be analyzed using Kaplan-Meier curves and log-rank tests. Discussion. This trial will provide level-1 evidence on the effectiveness of PEMFs in the management of osteochondral ankle lesions after arthroscopy. Trial registration. Netherlands Trial Register (NTR1636)
    corecore