41 research outputs found

    Blood glucose testing and primary prevention of diabetes mellitus type 2 - evaluation of the effect of evidence based patient information

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Evidence-based patient information (EBPI) has been recognised as important tool for informed choice in particular in the matter of preventive options. An objective, on the best scientific evidence-based consumer information about subthreshold elevated blood glucose levels (impaired fasting glucose and impaired glucose tolerance) and primary prevention of diabetes, is not available yet. Thus we developed a web-based EBPI and aim to evaluate its effects on informed decision making in people 50 years or older.</p> <p>Methods/Design</p> <p>We conduct a web-based randomised-controlled trial to evaluate the effect of information about elevated blood glucose levels and diabetes primary prevention on five specific outcomes: (i) knowledge of elevated blood glucose level-related issues (primary outcome); (ii) attitudes to a metabolic testing; (iii) intention to undergo a metabolic testing; (iv) decision conflict; (v) satisfaction with the information. The intervention group receives a specially developed EBPI about subthreshold elevated blood glucose levels and diabetes primary prevention, the control group information about this topic, available in the internet.</p> <p>The study population consists of people between 50 and 69 years of age without known diabetes. Participants will be recruited via the internet page of the cooperating health insurance company, Techniker Krankenkasse (TK), and the internet page of the German Diabetes Centre. Outcomes will be measured through online questionnaires. We expect better informed participants in the intervention group.</p> <p>Discussion</p> <p>The design of this study may be a prototype for other web-based prevention information and their evaluation.</p> <p>Trial registration</p> <p>Current Controlled Trial: ISRCTN22060616.</p

    GABA Coordinates with Insulin in Regulating Secretory Function in Pancreatic INS-1 β-Cells

    Get PDF
    Pancreatic islet β-cells produce large amounts of γ-aminobutyric acid (GABA), which is co-released with insulin. GABA inhibits glucagon secretion by hyperpolarizing α-cells via type-A GABA receptors (GABAARs). We and others recently reported that islet β-cells also express GABAARs and that activation of GABAARs increases insulin release. Here we investigate the effects of insulin on the GABA-GABAAR system in the pancreatic INS-1 cells using perforated-patch recording. The results showed that GABA produces a rapid inward current and depolarizes INS-1 cells. However, pre-treatment of the cell with regular insulin (1 µM) suppressed the GABA-induced current (IGABA) by 43%. Zinc-free insulin also suppressed IGABA to the same extent of inhibition by regular insulin. The inhibition of IGABA occurs within 30 seconds after application of insulin. The insulin-induced inhibition of IGABA persisted in the presence of PI3-kinase inhibitor, but was abolished upon inhibition of ERK, indicating that insulin suppresses GABAARs through a mechanism that involves ERK activation. Radioimmunoassay revealed that the secretion of C-peptide was enhanced by GABA, which was blocked by pre-incubating the cells with picrotoxin (50 µM, p<0.01) and insulin (1 µM, p<0.01), respectively. Together, these data suggest that autocrine GABA, via activation of GABAARs, depolarizes the pancreatic β-cells and enhances insulin secretion. On the other hand, insulin down-regulates GABA-GABAAR signaling presenting a feedback mechanism for fine-tuning β-cell secretion

    Specific ion channels contribute to key elements of pathology during secondary degeneration following neurotrauma

    Get PDF
    Background: Following partial injury to the central nervous system, cells beyond the initial injury site undergo secondary degeneration, exacerbating loss of neurons, compact myelin and function. Changes in Ca 2+ flux are associated with metabolic and structural changes, but it is not yet clear how flux through specific ion channels contributes to the various pathologies. Here, partial optic nerve transection in adult female rats was used to model secondary degeneration. Treatment with combinations of three ion channel inhibitors was used as a tool to investigate which elements of oxidative and structural damage related to long term functional outcomes. The inhibitors employed were the voltage gated Ca 2+ channel inhibitor Lomerizine (Lom), the Ca 2+ permeable AMPA receptor inhibitor YM872 and the P2X 7 receptor inhibitor oxATP. Results: Following partial optic nerve transection, hyper-phosphorylation of Tau and acetylated tubulin immunoreactivity were increased, and Nogo-A immunoreactivity was decreased, indicating that axonal changes occurred acutely. All combinations of ion channel inhibitors reduced hyper-phosphorylation of Tau and increased Nogo-A immunoreactivity at day 3 after injury. However, only Lom/oxATP or all three inhibitors in combination significantly reduced acetylated tubulin immunoreactivity. Most combinations of ion channel inhibitors were effective in restoring the lengths of the paranode and the paranodal gap, indicative of the length of the node of Ranvier, following injury. However, only all three inhibitors in combination restored to normal Ankyrin G length at the node of Ranvier. Similarly, HNE immunoreactivity and loss of oligodendrocyte precursor cells were only limited by treatment with all three ion channel inhibitors in combination. Conclusions: Data indicate that inhibiting any of a range of ion channels preserves certain elements of axon and node structure and limits some oxidative damage following injury, whereas ionic flux through all three channels must be inhibited to prevent lipid peroxidation and preserve Ankyrin G distribution and OPCs

    Glutamate and GABA receptors in vertebrate glial cells

    No full text

    Ion channel expression during the development of oligodendrocytes

    No full text

    Development of cell-cell coupling among cells of the oligodendrocyte lineage

    No full text

    Gamma-aminobutyric acid and glutamate receptors

    No full text

    Ca2+ channel expression in the oligodendrocyte lineage

    No full text
    corecore