926 research outputs found

    Identification of a class of nonlinear state-space models using RPE techniques

    Get PDF

    Top quark chromomagnetic dipole moment in the littlest Higgs model with T-parity

    Full text link
    The littlest Higgs model with T-parity, which is called LHTLHT model, predicts the existence of the new particles, such as heavy top quark, heavy gauge bosons, and mirror fermions. We calculate the one-loop contributions of these new particles to the top quark chromomagnetic dipole moment (CMDM)(CMDM) ΔK\Delta K. We find that the contribution of the LHTLHT model is one order of magnitude smaller than the standard model prediction value.Comment: latex files, 12 pages, 3 figure

    Brief review of the searches for the rare decays Bs0→Ό+Ό−B^0_s \rightarrow \mu^+ \mu^- and B0→Ό+Ό−B^0 \rightarrow \mu^+ \mu^-

    Full text link
    The current experimental status of the searches for the very rare decays Bs0→Ό+Ό−B^0_s \rightarrow \mu^+ \mu^- and B0→Ό+Ό−B^0 \rightarrow \mu^+ \mu^- is discussed. These channels are highly sensitive to various extensions of the Standard Model, specially in the scalar and pseudoscalar sector. The recent, most sensitive measurements from the CDF, ATLAS, CMS and LHCb collaborations are discussed and the combined upper exclusion limit on the branching fractions determined by the LHC experiments is shown to be 4.2×10−94.2\times 10^{-9} for Bs0→Ό+Ό−B^0_s \rightarrow \mu^+ \mu^- and 0.8×10−90.8\times 10^{-9} for B0→Ό+Ό−B^0 \rightarrow \mu^+ \mu^-. The implications of these tight bounds on a selected set of New Physics models is sketched.Comment: 20 pages, 15 figures, invited review for Modern Physics Letters

    The Impact of a 4th Generation on Mixing and CP Violation in the Charm System

    Full text link
    We study D0-D0 mixing in the presence of a fourth generation of quarks. In particular, we calculate the size of the allowed CP violation which is found at the observable level well beyond anything possible with CKM dynamics. We calculate the semileptonic asymmetry a_SL and the mixing induced CP asymmetry eta_fS_f which are correlated with each other. We also investigate the correlation of eta_fS_f with a number of prominent observables in other mesonic systems like epsilon'/epsilon, Br(K_L -> pi0 nu nu), Br(K+ -> pi+ nu nu), Br(B_s ->mu+ mu-), Br(B_d -> mu+ mu-) and finally S_psi phi in the B_s system. We identify a clear pattern of flavour and CP violation predicted by the SM4 model: While simultaneous large 4G effects in the K and D systems are possible, accompanying large NP effects in the B_d system are disfavoured. However this behaviour is not as pronounced as found for the LHT and RSc models. In contrast to this, sizeable CP violating effects in the B_s system are possible unless extreme effects in eta_fS_f are found, and Br(B_s ->mu+ mu-) can be strongly enhanced regardless of the situation in the D system. We find that, on the other hand, S_psi phi > 0.2 combined with the measured epsilon'/epsilon significantly diminishes 4G effects within the D system.Comment: 22 pages, 23 figures, v2 (references added

    Phenomenology of a three-family model with gauge symmetry SU(3)_c X SU(4)_L X U(1)_X

    Full text link
    We study an extension of the gauge group SU(3)_c X SU(2)_L X U(1)_Y of the standard model to the symmetry group SU(3)_c X SU(4)_L X U(1)_X (3-4-1 for short). This extension provides an interesting attempt to answer the question of family replication in the sense that models for the electroweak interaction can be constructed so that anomaly cancellation is achieved by an interplay between generations, all of them under the condition that the number of families must be divisible by the number of colours of SU(3)_c. This method of anomaly cancellation requires a family of quarks transforming differently from the other two, thus leading to tree-level flavour changing neutral currents (FCNC) transmitted by the two extra neutral gauge bosons Zâ€ČZ' and Zâ€Čâ€ČZ'' predicted by the model. In a version of the 3-4-1 extension, which does not contain particles with exotic electric charges, we study the fermion mass spectrum and some aspects of the phenomenology of the neutral gauge boson sector. In particular, we impose limits on the Z−Zâ€ČZ-Z' mixing angle and on the mass scale of the corresponding physical new neutral gauge boson Z2Z_2, and establish a lower bound on the mass of the additional new neutral gauge boson Zâ€Čâ€Č≡Z3Z'' \equiv Z_3. For the analysis we use updated precision electroweak data at the Z-pole from the CERN LEP and SLAC Linear Collider, and atomic parity violation data. The mass scale of the additional new neutral gauge boson Z3Z_3 is constrained by using updated experimental inputs from neutral meson mixing in the analysis of the sources of FCNC in the model. The data constrain the Z−Zâ€ČZ-Z' mixing angle to a very small value of O(0.001), and the lower bounds on MZ2M_{Z_2} and on MZ3M_{Z_3} are found to be of O(1 TeV) and of O(7 TeV), repectively.Comment: 22 pages, 6 tables, 1 figure. To appear in J. Phys. G: Nuclear and Particle Physic

    Photon-induced production of the mirror quarks from the LHTLHT model at the LHCLHC

    Full text link
    The photon-induced processes at the LHCLHC provide clean experimental conditions due to absence of the proton remnants, which might produce complementary and interesting results for tests of the standard model and for searching of new physics. In the context of the littlest HiggsHiggs model with T-parity, we consider the photon-induced production of the mirror quarks at the LHCLHC. The cross sections for various production channels are calculated and a simply phenomenology analysis is performed by assuming leptonic decays.Comment: 20 pages, 10 figure

    Precise limits from lepton flavour violating processes on the Littlest Higgs model with T-parity

    Full text link
    We recalculate the leading one-loop contributions to mu > e gamma and mu -> eee in the Littlest Higgs model with T-parity, recovering previous results for the former. When all the Goldstone interactions are taken into account, the latter is also ultraviolet finite. The present experimental limits on these processes require a somewhat heavy effective scale ~2.5 TeV, or the flavour alignment of the Yukawa couplings of light and heavy leptons at the ~10% level, or the splitting of heavy lepton masses to a similar precision. Present limits on tau decays set no bounds on the corresponding parameters involving the tau leptonComment: 41 pages, 11 figures; v3: matches published version in JHE

    Characterising New Physics Models by Effective Dimensionality of Parameter Space

    Full text link
    We show that the dimension of the geometric shape formed by the phenomenologically valid points inside a multi-dimensional parameter space can be used to characterise different new physics models and to define a quantitative measure for the distribution of the points. We explain a simple algorithm to determine the box-counting dimension from a given set of parameter points, and illustrate our method with examples from different models that have recently been studied with respect to precision flavour observables.Comment: 14 pages, 8 figure

    Implications of large dimuon CP asymmetry in B_{d,s} decays on minimal flavor violation with low tan beta

    Full text link
    The D0 collaboration has recently announced evidence for a dimuon CP asymmetry in B_{d,s} decays of order one percent. If confirmed, this asymmetry requires new physics. We argue that for minimally flavor violating (MFV) new physics, and at low tan beta=v_u/v_d, there are only two four-quark operators (Q_{2,3}) that can provide the required CP violating effect. The scale of such new physics must lie below 260 GeV sqrt{tan beta}. The effect is universal in the B_s and B_d systems, leading to S_{psi K}~sin(2beta)-0.15 and S_{psi phi}~0.25. The effects on epsilon_K and on electric dipole moments are negligible. The most plausible mechanism is tree-level scalar exchange. MFV supersymmetry with low tan beta will be excluded. Finally, we explain how a pattern of deviations from the Standard Model predictions for S_{psi phi}, S_{psi K} and epsilon_K can be used to test MFV and, if MFV holds, to probe its structure in detail.Comment: 11 pages. v2: References adde
    • 

    corecore