4,265 research outputs found
Coupled phase transformations and plastic flows under torsion at high pressure in rotational diamond anvil cell: Effect of contact sliding
A three-dimensional large-sliding contact model coupled with strain-induced phase transformations (PTs) and plastic flow in a disk-like sample under torsion at high pressure in rotational diamond anvil cell (RDAC) is formulated and studied. Coulomb and plastic friction are combined and take into account variable parameters due to PT. Results are obtained for weaker, equal-strength, and stronger high pressure phases, and for three values of the kinetic coefficient in a strain-controlled kinetic equation and friction coefficient. All drawbacks typical of problem with cohesion are overcome, including eliminating mesh-dependent shear band and artificial plastic zones. Contact sliding intensifies radial plastic flow, which leads to larger reduction in sample thickness. Larger plastic strain and increased pressure in the central region lead to intensification of PT. However, the effect of the reduction in the friction coefficient on PT kinetics is nonmonotonous. Sliding increases away from the center and with growing rotation and is weakly dependent on the kinetic coefficient. Also, cyclic back and forth torsion is studied and compared to unidirectional torsion. Multiple experimental phenomena, e.g., pressure self-multiplication effect, steps (plateaus) at pressure distribution, flow to the center of a sample, and oscillatory pressure distribution for weaker high-pressure phase, are reproduced and interpreted. Reverse PT in high pressure phase that flowed to the low pressure region is revealed. Possible misinterpretation of experimental PT pressure is found. Obtained results represent essential progress toward understanding of strain-induced PTs under compression and shear in RDAC and may be used for designing experiments for synthesis of new high pressure phases and reduction in PT pressure for known phases, as well as for determination of PT kinetics from experiments
Stochastic stability versus localization in chaotic dynamical systems
We prove stochastic stability of chaotic maps for a general class of Markov
random perturbations (including singular ones) satisfying some kind of mixing
conditions. One of the consequences of this statement is the proof of Ulam's
conjecture about the approximation of the dynamics of a chaotic system by a
finite state Markov chain. Conditions under which the localization phenomenon
(i.e. stabilization of singular invariant measures) takes place are also
considered. Our main tools are the so called bounded variation approach
combined with the ergodic theorem of Ionescu-Tulcea and Marinescu, and a random
walk argument that we apply to prove the absence of ``traps'' under the action
of random perturbations.Comment: 27 pages, LaTe
Distant perturbation asymptotics in window-coupled waveguides. I. The non-threshold case
We consider a pair of adjacent quantum waveguides, in general of different
widths, coupled laterally by a pair of windows in the common boundary, not
necessarily of the same length, at a fixed distance. The Hamiltonian is the
respective Dirichlet Laplacian. We analyze the asymptotic behavior of the
discrete spectrum as the window distance tends to infinity for the generic
case, i.e. for eigenvalues of the corresponding one-window problems separated
from the threshold
Strain-induced phase transformation under compression in a diamond anvil cell: Simulations of a sample and gasket
Combined high pressure phase transformations (PTs) and plastic flow in a sample within a gasket compressed in diamond anvil cell (DAC) are studied for the first time using finite element method. The key point is that phase transformations are modelled as strain-induced, which involves a completely different kinetic description than for traditional pressure-induced PTs. The model takes into account, contact sliding with Coulomb and plastic friction at the boundaries between the sample, gasket, and anvil. A comprehensive computational study of the effects of the kinetic parameter, ratio of the yield strengths of high and low-pressure phases and the gasket, sample radius, and initial thickness on the PTs and plastic flow is performed. A new sliding mechanism at the contact line between the sample, gasket, and anvil called extrusion-based pseudoslip is revealed, which plays an important part in producing high pressure. Strain-controlled kinetics explains why experimentally determined phase transformation pressure and kinetics (concentration of high pressure phase vs. pressure) differ for different geometries and properties of the gasket and the sample: they provide different plastic strain, which was not measured. Utilization of the gasket changes radial plastic flow toward the center of a sample, which leads to high quasi-homogeneous pressure for some geometries. For transformation to a stronger high pressure phase, plastic strain and concentration of a high-pressure phase are also quasi-homogeneous. This allowed us to suggest a method of determining strain-controlled kinetics from experimentation, which is not possible for weaker and equal-strength high-pressure phases and cases without a gasket. Some experimental phenomena are reproduced and interpreted. Developed methods and obtained results represent essential progress toward the understanding of PTs under compression in the DAC. This will allow one optimal design of experiments and conditions for synthesis of new high pressure phases
Clues to the nature of dark matter from first galaxies
We use thirty-eight high-resolution simulations of galaxy formation between
redshift 10 and 5 to study the impact of a 3 keV warm dark matter (WDM)
candidate on the high-redshift Universe. We focus our attention on the stellar
mass function and the global star formation rate and consider the consequences
for reionization, namely the neutral hydrogen fraction evolution and the
electron scattering optical depth. We find that three different effects
contribute to differentiate warm and cold dark matter (CDM) predictions: WDM
suppresses the number of haloes with mass less than few M; at
a fixed halo mass, WDM produces fewer stars than CDM; and finally at halo
masses below M, WDM has a larger fraction of dark haloes than
CDM post-reionization. These three effects combine to produce a lower stellar
mass function in WDM for galaxies with stellar masses at and below
M. For , the global star formation density is lower by a
factor of two in the WDM scenario, and for a fixed escape fraction, the
fraction of neutral hydrogen is higher by 0.3 at . This latter
quantity can be partially reconciled with CDM and observations only by
increasing the escape fraction from 23 per cent to 34 per cent. Overall, our
study shows that galaxy formation simulations at high redshift are a key tool
to differentiate between dark matter candidates given a model for baryonic
physics.Comment: 11 pages, 8 figures, submitted to MNRA
NIHAO XX: The impact of the star formation threshold on the cusp-core transformation of cold dark matter haloes
We use cosmological hydrodynamical galaxy formation simulations from the
NIHAO project to investigate the impact of the threshold for star formation on
the response of the dark matter (DM) halo to baryonic processes. The fiducial
NIHAO threshold, , results in strong expansion of the DM
halo in galaxies with stellar masses in the range . We find that lower thresholds such as (as employed
by the EAGLE/APOSTLE and Illustris/AURIGA projects) do not result in
significant halo expansion at any mass scale. Halo expansion driven by
supernova feedback requires significant fluctuations in the local gas fraction
on sub-dynamical times (i.e., < 50 Myr at galaxy half-light radii), which are
themselves caused by variability in the star formation rate. At one per cent of
the virial radius, simulations with have gas fractions of
and variations of , while simulations have order of
magnitude lower gas fractions and hence do not expand the halo. The observed DM
circular velocities of nearby dwarf galaxies are inconsistent with CDM
simulations with and , but in reasonable agreement with .
Star formation rates are more variable for higher , lower galaxy masses, and
when star formation is measured on shorter time scales. For example,
simulations with have up to 0.4 dex higher scatter in specific star
formation rates than simulations with . Thus observationally
constraining the sub-grid model for star formation, and hence the nature of DM,
should be possible in the near future.Comment: 18 pages, 13 figures, accepted to MNRA
Bulk Nanocrystalline Thermoelectrics Based on Bi-Sb-Te Solid Solution
A nanopowder from p-Bi-Sb-Te with particles ~ 10 nm were fabricated by the
ball milling using different technological modes. Cold and hot pressing at
different conditions and also SPS process were used for consolidation of the
powder into a bulk nanostructure and nanocomposites. The main factors allowing
slowing-down of the growth of nanograins as a result of recrystallization are
the reduction of the temperature and of the duration of the pressing, the
increase of the pressure, as well as addition of small value additives (like
MoS2, thermally expanded graphite or fullerenes). It was reached the
thermoelectric figure of merit ZT=1.22 (at 360 K) in the bulk nanostructure
Bi0,4Sb1,6Te3 fabricated by SPS method. Some mechanisms of the improvement of
the thermoelectric efficiency in bulk nanocrystalline semiconductors based on
BixSb2-xTe3 are studied theoretically. The reduction of nanograin size can lead
to improvement of the thermoelectric figure of merit. The theoretical
dependence of the electric and heat conductivities and the thermoelectric power
as the function of nanograins size in BixSb2-xTe3 bulk nanostructure are quite
accurately correlates with the experimental data.Comment: 35 pages, 24 figures, 4 tables, 52 reference
Plastic flows and phase transformations in materials under compression in diamond anvil cell: Effect of contact sliding
Modeling of coupled plastic flows and strain-induced phase transformations (PTs) under high pressure in a diamond anvil cell is performed with the focus on the effect of the contact sliding between sample and anvils. Finite element software ABAQUS is utilized and a combination of Coulomb friction and plastic friction is considered. Results are obtained for PTs to weaker, equal-strength, and stronger high pressure phases, using different scaling parameters in a strain-controlled kinetic equation, and with various friction coefficients. Compared to the model with cohesion, artificial shear banding near the constant surface is eliminated. Sliding and the reduction in friction coefficient intensify radial plastic flow in the entire sample (excluding a narrow region near the contact surface) and a reduction in thickness. A reduction in the frictioncoefficient to 0.1 intensifies sliding and increases pressure in the central region. Increases in both plastic strain and pressure lead to intensification of strain-induced PT. The effect of self-locking of sliding is revealed. Multiple experimental phenomena are reproduced and interpreted. Thus, plastic flow and PT can be controlled by controlling friction
- …