998 research outputs found

    Measurement of Untruncated Nuclear Spin Interactions via Zero- to Ultra-Low-Field Nuclear Magnetic Resonance

    Full text link
    Zero- to ultra-low-field nuclear magnetic resonance (ZULF NMR) provides a new regime for the measurement of nuclear spin-spin interactions free from effects of large magnetic fields, such as truncation of terms that do not commute with the Zeeman Hamiltonian. One such interaction, the magnetic dipole-dipole coupling, is a valuable source of spatial information in NMR, though many terms are unobservable in high-field NMR, and the coupling averages to zero under isotropic molecular tumbling. Under partial alignment, this information is retained in the form of so-called residual dipolar couplings. We report zero- to ultra-low-field NMR measurements of residual dipolar couplings in acetonitrile-2-13^{13}C aligned in stretched polyvinyl acetate gels. This represents the first investigation of dipolar couplings as a perturbation on the indirect spin-spin JJ-coupling in the absence of an applied magnetic field. As a consequence of working at zero magnetic field, we observe terms of the dipole-dipole coupling Hamiltonian that are invisible in conventional high-field NMR. This technique expands the capabilities of zero- to ultra-low-field NMR and has potential applications in precision measurement of subtle physical interactions, chemical analysis, and characterization of local mesoscale structure in materials.Comment: 6 pages, 3 figure

    Inhibiting the β-Lactamase of Mycobacterium tuberculosis (Mtb) with Novel Boronic Acid Transition-State Inhibitors (BATSIs)

    Get PDF
    BlaC, the single chromosomally-encoded β-lactamase of Mycobacterium tuberculosis, has been identified as a promising target for novel therapies that rely upon β-lactamase inhibition. Boronic acid transition state inhibitors (BATSIs) are a class of β-lactamase inhibitors which permit rational inhibitor design by combinations of various R1 and R2 side chains. To explore the structural determinants of effective inhibition, we screened a panel of 25 BATSIs synthesized to explore key structure-function relationships. We identified a cefoperazone analogue, EC19, which displayed slow, tight-binding inhibition against BlaC. To further characterize the molecular basis of inhibition, we solved the three-dimensional structure of the EC19-BlaC complex and expanded our analysis to variant enzymes. The results of this structure-function analysis encourage the design of a novel class of β-lactamase inhibitors, BATSIs, to be used against Mycobacterium tuberculosis

    Can Inhibitor-Resistant Substitutions in The Mycobacterium Tuberculosis β-Lactamase BlaC Lead to Clavulanate Resistance?: A Biochemical Rationale for The Use of β-Lactam–β-Lactamase Inhibitor Combinations

    Get PDF
    The current emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis calls for novel treatment strategies. Recently, BlaC, the principal β-lactamase of Mycobacterium tuberculosis, was recognized as a potential therapeutic target. The combination of meropenem and clavulanic acid, which inhibits BlaC, was found to be effective against even extensively drug-resistant M. tuberculosis strains when tested in vitro. Yet there is significant concern that drug resistance against this combination will also emerge. To investigate the potential of BlaC to evolve variants resistant to clavulanic acid, we introduced substitutions at important amino acid residues of M. tuberculosis BlaC (R220, A244, S130, and T237). Whereas the substitutions clearly led to in vitro clavulanic acid resistance in enzymatic assays but at the expense of catalytic activity, transformation of variant BlaCs into an M. tuberculosis H37Rv background revealed that impaired inhibition of BlaC did not affect inhibition of growth in the presence of ampicillin and clavulanate. From these data we propose that resistance to β-lactam–β-lactamase inhibitor combinations will likely not arise from structural alteration of BlaC, therefore establishing confidence that this therapeutic modality can be part of a successful treatment regimen against M. tuberculosis

    Can Inhibitor-Resistant Substitutions in The Mycobacterium Tuberculosis β-Lactamase BlaC Lead to Clavulanate Resistance?: A Biochemical Rationale for The Use of β-Lactam–β-Lactamase Inhibitor Combinations

    Get PDF
    The current emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis calls for novel treatment strategies. Recently, BlaC, the principal β-lactamase of Mycobacterium tuberculosis, was recognized as a potential therapeutic target. The combination of meropenem and clavulanic acid, which inhibits BlaC, was found to be effective against even extensively drug-resistant M. tuberculosis strains when tested in vitro. Yet there is significant concern that drug resistance against this combination will also emerge. To investigate the potential of BlaC to evolve variants resistant to clavulanic acid, we introduced substitutions at important amino acid residues of M. tuberculosis BlaC (R220, A244, S130, and T237). Whereas the substitutions clearly led to in vitro clavulanic acid resistance in enzymatic assays but at the expense of catalytic activity, transformation of variant BlaCs into an M. tuberculosis H37Rv background revealed that impaired inhibition of BlaC did not affect inhibition of growth in the presence of ampicillin and clavulanate. From these data we propose that resistance to β-lactam–β-lactamase inhibitor combinations will likely not arise from structural alteration of BlaC, therefore establishing confidence that this therapeutic modality can be part of a successful treatment regimen against M. tuberculosis

    Location of the CD8 T Cell Epitope within the Antigenic Precursor Determines Immunogenicity and Protection against the Toxoplasma gondii Parasite

    Get PDF
    CD8 T cells protect the host from disease caused by intracellular pathogens, such as the Toxoplasma gondii (T. gondii) protozoan parasite. Despite the complexity of the T. gondii proteome, CD8 T cell responses are restricted to only a small number of peptide epitopes derived from a limited set of antigenic precursors. This phenomenon is known as immunodominance and is key to effective vaccine design. However, the mechanisms that determine the immunogenicity and immunodominance hierarchy of parasite antigens are not well understood.Here, using genetically modified parasites, we show that parasite burden is controlled by the immunodominant GRA6-specific CD8 T cell response but not by responses to the subdominant GRA4- and ROP7-derived epitopes. Remarkably, optimal processing and immunodominance were determined by the location of the peptide epitope at the C-terminus of the GRA6 antigenic precursor. In contrast, immunodominance could not be explained by the peptide affinity for the MHC I molecule or the frequency of T cell precursors in the naive animals. Our results reveal the molecular requirements for optimal presentation of an intracellular parasite antigen and for eliciting protective CD8 T cells. © 2013 Feliu et al

    Privatization Methods and Productivity Effects in Romanian Industrial Enterprises

    Get PDF
    Comprehensive panel data on privatization transactions and labor productivity in Romanian industrial corporations are used to describe the post-privatization ownership structure, and to estimate the effect of Romania\u27s diverse privatization policies on firm performance. The econometric results show consistently positive, highly significant effects of private ownership on labor productivity growth, the point estimates imply- ing an increased 1.0 to 1.7 percentage growth for a 10 percent rise in private shareholding. The strongest estimated impacts are associated with sales to outside blockholders; insider transfers and mass privatization are estimated to have significantly smaller—although still positive—effects on firm performance
    corecore