54 research outputs found
The Near Infrared Imager and Slitless Spectrograph for JWST -- V. Kernel Phase Imaging and Data Analysis
Kernel phase imaging (KPI) enables the direct detection of substellar
companions and circumstellar dust close to and below the classical (Rayleigh)
diffraction limit. We present a kernel phase analysis of JWST NIRISS full pupil
images taken during the instrument commissioning and compare the performance to
closely related NIRISS aperture masking interferometry (AMI) observations. For
this purpose, we develop and make publicly available the custom "Kpi3Pipeline"
enabling the extraction of kernel phase observables from JWST images. The
extracted observables are saved into a new and versatile kernel phase FITS file
(KPFITS) data exchange format. Furthermore, we present our new and publicly
available "fouriever" toolkit which can be used to search for companions and
derive detection limits from KPI, AMI, and long-baseline interferometry
observations while accounting for correlated uncertainties in the model fitting
process. Among the four KPI targets that were observed during NIRISS instrument
commissioning, we discover a low-contrast (~1:5) close-in (~1 )
companion candidate around CPD-66~562 and a new high-contrast (~1:170)
detection separated by ~1.5 from 2MASS~J062802.01-663738.0. The
5- companion detection limits around the other two targets reach ~6.5
mag at ~200 mas and ~7 mag at ~400 mas. Comparing these limits to those
obtained from the NIRISS AMI commissioning observations, we find that KPI and
AMI perform similar in the same amount of observing time. Due to its 5.6 times
higher throughput if compared to AMI, KPI is beneficial for observing faint
targets and superior to AMI at separations >325 mas. At very small separations
(<100 mas) and between ~250-325 mas, AMI slightly outperforms KPI which suffers
from increased photon noise from the core and the first Airy ring of the
point-spread function.Comment: 34 pages, 17 figures, accepted for publication in PAS
Impact of life stage and duration of exposure on arsenic-induced proliferative lesions and neoplasia in C3H mice
Epidemiological studies suggest that chronic exposure to inorganic arsenic is associated with cancer of the skin, urinary bladder and lung as well as the kidney and liver. Previous experimental studies have demonstrated increased incidence of liver, lung, ovary, and uterine tumors in mice exposed to 85 ppm (∼8 mg/kg) inorganic arsenic during gestation. To further characterize age susceptibility to arsenic carcinogenesis we administered 85 ppm inorganic arsenic in drinking water to C3H mice during gestation, prior to pubescence and post-pubescence to compare proliferative lesion and tumor outcomes over a one-year exposure period. Inorganic arsenic significantly increased the incidence of hyperplasia in urinary bladder (48%) and oviduct (36%) in female mice exposed prior to pubescence (beginning on postnatal day 21 and extending through one year) compared to control mice (19 and 5%, respectively). Arsenic also increased the incidence of hyperplasia in urinary bladder (28%) of female mice continuously exposed to arsenic (beginning on gestation day 8 and extending though one year) compared to gestation only exposed mice (0%). In contrast, inorganic arsenic significantly decreased the incidence of tumors in liver (0%) and adrenal glands (0%) of male mice continuously exposed from gestation through one year, as compared to levels in control (30 and 65%, respectively) and gestation only (33 and 55%, respectively) exposed mice. Together, these results suggest that continuous inorganic arsenic exposure at 85 ppm from gestation through one year increases the incidence and severity of urogenital proliferative lesions in female mice and decreases the incidence of liver and adrenal tumors in male mice. The paradoxical nature of these effects may be related to altered lipid metabolism, the effective dose in each target organ, and/or the shorter one-year observational period
The Near Infrared Imager and Slitless Spectrograph for the James Webb Space Telescope. IV. Aperture Masking Interferometry
The James Webb Space Telescope’s Near Infrared Imager and Slitless Spectrograph (JWST-NIRISS) flies a 7-hole non-redundant mask (NRM), the first such interferometer in space, operating at 3-5 μm wavelengths, and a bright limit of ≃4 mag in W2. We describe the NIRISS Aperture Masking Interferometry (AMI) mode to help potential observers understand its underlying principles, present some sample science cases, explain its operational observing strategies, indicate how AMI proposals can be developed with data simulations, and how AMI data can be analyzed. We also present key results from commissioning AMI. Since the allied Kernel Phase Imaging (KPI) technique benefits from AMI operational strategies, we also cover NIRISS KPI methods and analysis techniques, including a new user-friendly KPI pipeline. The NIRISS KPI bright limit is ≃8 W2 (4.6 μm) magnitudes. AMI NRM and KPI achieve an inner working angle of ∼70 mas, which is well inside the ∼400 mas NIRCam inner working angle for its circular occulter coronagraphs at comparable wavelengths.</p
The Near Infrared Imager and Slitless Spectrograph for the James Webb Space Telescope. IV. Aperture Masking Interferometry
The James Webb Space Telescope’s Near Infrared Imager and Slitless Spectrograph (JWST-NIRISS) flies a 7-hole non-redundant mask (NRM), the first such interferometer in space, operating at 3-5 μm wavelengths, and a bright limit of ≃4 mag in W2. We describe the NIRISS Aperture Masking Interferometry (AMI) mode to help potential observers understand its underlying principles, present some sample science cases, explain its operational observing strategies, indicate how AMI proposals can be developed with data simulations, and how AMI data can be analyzed. We also present key results from commissioning AMI. Since the allied Kernel Phase Imaging (KPI) technique benefits from AMI operational strategies, we also cover NIRISS KPI methods and analysis techniques, including a new user-friendly KPI pipeline. The NIRISS KPI bright limit is ≃8 W2 (4.6 μm) magnitudes. AMI NRM and KPI achieve an inner working angle of ∼70 mas, which is well inside the ∼400 mas NIRCam inner working angle for its circular occulter coronagraphs at comparable wavelengths
The Near Infrared Imager and Slitless Spectrograph for the James Webb Space Telescope. IV. Aperture Masking Interferometry
The James Webb Space Telescope’s Near Infrared Imager and Slitless Spectrograph (JWST-NIRISS) flies a 7-hole non-redundant mask (NRM), the first such interferometer in space, operating at 3-5 μm wavelengths, and a bright limit of ≃4 mag in W2. We describe the NIRISS Aperture Masking Interferometry (AMI) mode to help potential observers understand its underlying principles, present some sample science cases, explain its operational observing strategies, indicate how AMI proposals can be developed with data simulations, and how AMI data can be analyzed. We also present key results from commissioning AMI. Since the allied Kernel Phase Imaging (KPI) technique benefits from AMI operational strategies, we also cover NIRISS KPI methods and analysis techniques, including a new user-friendly KPI pipeline. The NIRISS KPI bright limit is ≃8 W2 (4.6 μm) magnitudes. AMI NRM and KPI achieve an inner working angle of ∼70 mas, which is well inside the ∼400 mas NIRCam inner working angle for its circular occulter coronagraphs at comparable wavelengths.</p
The Near Infrared Imager and Slitless Spectrograph for the James Webb Space Telescope. IV. Aperture Masking Interferometry
The James Webb Space Telescope’s Near Infrared Imager and Slitless Spectrograph (JWST-NIRISS) flies a 7-hole non-redundant mask (NRM), the first such interferometer in space, operating at 3-5 μm wavelengths, and a bright limit of ≃4 mag in W2. We describe the NIRISS Aperture Masking Interferometry (AMI) mode to help potential observers understand its underlying principles, present some sample science cases, explain its operational observing strategies, indicate how AMI proposals can be developed with data simulations, and how AMI data can be analyzed. We also present key results from commissioning AMI. Since the allied Kernel Phase Imaging (KPI) technique benefits from AMI operational strategies, we also cover NIRISS KPI methods and analysis techniques, including a new user-friendly KPI pipeline. The NIRISS KPI bright limit is ≃8 W2 (4.6 μm) magnitudes. AMI NRM and KPI achieve an inner working angle of ∼70 mas, which is well inside the ∼400 mas NIRCam inner working angle for its circular occulter coronagraphs at comparable wavelengths
The Near Infrared Imager and Slitless Spectrograph for the James Webb Space Telescope -- IV. Aperture Masking Interferometry
The James Webb Space Telescope's Near Infrared Imager and Slitless
Spectrograph (JWST-NIRISS) flies a 7-hole non-redundant mask (NRM), the first
such interferometer in space, operating at 3-5 \micron~wavelengths, and a
bright limit of magnitudes in W2. We describe the NIRISS Aperture
Masking Interferometry (AMI) mode to help potential observers understand its
underlying principles, present some sample science cases, explain its
operational observing strategies, indicate how AMI proposals can be developed
with data simulations, and how AMI data can be analyzed. We also present key
results from commissioning AMI. Since the allied Kernel Phase Imaging (KPI)
technique benefits from AMI operational strategies, we also cover NIRISS KPI
methods and analysis techniques, including a new user-friendly KPI pipeline.
The NIRISS KPI bright limit is W2 magnitudes. AMI (and KPI) achieve
an inner working angle of mas that is well inside the mas
NIRCam inner working angle for its circular occulter coronagraphs at comparable
wavelengths.Comment: 30 pages, 10 figure
Recommended from our members
The role of APOBEC3B in lung tumor evolution and targeted cancer therapy resistance
In this study, the impact of the apolipoprotein B mRNA-editing catalytic subunit-like (APOBEC) enzyme APOBEC3B (A3B) on epidermal growth factor receptor (EGFR)-driven lung cancer was assessed. A3B expression in EGFR mutant (EGFRmut) non-small-cell lung cancer (NSCLC) mouse models constrained tumorigenesis, while A3B expression in tumors treated with EGFR-targeted cancer therapy was associated with treatment resistance. Analyses of human NSCLC models treated with EGFR-targeted therapy showed upregulation of A3B and revealed therapy-induced activation of nuclear factor kappa B (NF-κB) as an inducer of A3B expression. Significantly reduced viability was observed with A3B deficiency, and A3B was required for the enrichment of APOBEC mutation signatures, in targeted therapy-treated human NSCLC preclinical models. Upregulation of A3B was confirmed in patients with NSCLC treated with EGFR-targeted therapy. This study uncovers the multifaceted roles of A3B in NSCLC and identifies A3B as a potential target for more durable responses to targeted cancer therapy.</p
- …