388 research outputs found
A methodology for determining amino-acid substitution matrices from set covers
We introduce a new methodology for the determination of amino-acid
substitution matrices for use in the alignment of proteins. The new methodology
is based on a pre-existing set cover on the set of residues and on the
undirected graph that describes residue exchangeability given the set cover.
For fixed functional forms indicating how to obtain edge weights from the set
cover and, after that, substitution-matrix elements from weighted distances on
the graph, the resulting substitution matrix can be checked for performance
against some known set of reference alignments and for given gap costs. Finding
the appropriate functional forms and gap costs can then be formulated as an
optimization problem that seeks to maximize the performance of the substitution
matrix on the reference alignment set. We give computational results on the
BAliBASE suite using a genetic algorithm for optimization. Our results indicate
that it is possible to obtain substitution matrices whose performance is either
comparable to or surpasses that of several others, depending on the particular
scenario under consideration
Recommended from our members
Challenges and Potential Solutions for Reducing Climate Control Loads in Conventional and Hybrid Vehicles
The National Renewable Energy Laboratory, a U.S. Department of Energy national laboratory, is collaborating with U.S. automotive manufacturers to develop innovative techniques to reduce national fuel consumption and vehicle tailpipe emissions by reducing vehicle climate control loads. A new U.S. emissions test, the Supplemental Federal Test Procedure (SFTP), will soon begin measuring tailpipe emissions with the air conditioning system operating. Modeled results show that emissions of oxides of nitrogen (NOx) and carbon monoxide (CO) more than double during the air conditioning part of the SFTP. Reducing the transmittance of the glazing can have a greater impact on the cabin soak temperature than ventilating the vehicle during a hot soak. Reducing the amount of outside air can decrease cooling and heating loads but requires that the recirculated air be cleaned. We discuss a photocatalytic oxidation air-cleaning process for removing volatile organic compounds and bioareosols. We conclude with an example of modeling the thermal comfort of the occupants. An auxiliary load increase of only 400 Watts (W) results in a 0.4 km/L (1 mpg) decrease for a conventional 11.9-L/100-km (28-mpg) vehicle. If every vehicle in the United States were to save only 0.4 km/L (1 mpg), $4 billion (U.S. dollars) would be saved annually in gasoline and oil costs. Further information can be found at http://www.ctts.nrel.gov/auxload.html
Measurement of the branching fraction
The branching fraction is measured in a data sample
corresponding to 0.41 of integrated luminosity collected with the LHCb
detector at the LHC. This channel is sensitive to the penguin contributions
affecting the sin2 measurement from The
time-integrated branching fraction is measured to be . This is the most precise measurement to
date
Model-independent search for CP violation in D0→K−K+π−π+ and D0→π−π+π+π− decays
A search for CP violation in the phase-space structures of D0 and View the MathML source decays to the final states K−K+π−π+ and π−π+π+π− is presented. The search is carried out with a data set corresponding to an integrated luminosity of 1.0 fb−1 collected in 2011 by the LHCb experiment in pp collisions at a centre-of-mass energy of 7 TeV. For the K−K+π−π+ final state, the four-body phase space is divided into 32 bins, each bin with approximately 1800 decays. The p-value under the hypothesis of no CP violation is 9.1%, and in no bin is a CP asymmetry greater than 6.5% observed. The phase space of the π−π+π+π− final state is partitioned into 128 bins, each bin with approximately 2500 decays. The p-value under the hypothesis of no CP violation is 41%, and in no bin is a CP asymmetry greater than 5.5% observed. All results are consistent with the hypothesis of no CP violation at the current sensitivity
Search for the lepton-flavor-violating decays Bs0→e±μ∓ and B0→e±μ∓
A search for the lepton-flavor-violating decays Bs0→e±μ∓ and B0→e±μ∓ is performed with a data sample, corresponding to an integrated luminosity of 1.0 fb-1 of pp collisions at √s=7 TeV, collected by the LHCb experiment. The observed number of Bs0→e±μ∓ and B0→e±μ∓ candidates is consistent with background expectations. Upper limits on the branching fractions of both decays are determined to be B(Bs0→e±μ∓)101 TeV/c2 and MLQ(B0→e±μ∓)>126 TeV/c2 at 95% C.L., and are a factor of 2 higher than the previous bounds
Absolute luminosity measurements with the LHCb detector at the LHC
Absolute luminosity measurements are of general interest for colliding-beam
experiments at storage rings. These measurements are necessary to determine the
absolute cross-sections of reaction processes and are valuable to quantify the
performance of the accelerator. Using data taken in 2010, LHCb has applied two
methods to determine the absolute scale of its luminosity measurements for
proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In
addition to the classic "van der Meer scan" method a novel technique has been
developed which makes use of direct imaging of the individual beams using
beam-gas and beam-beam interactions. This beam imaging method is made possible
by the high resolution of the LHCb vertex detector and the close proximity of
the detector to the beams, and allows beam parameters such as positions, angles
and widths to be determined. The results of the two methods have comparable
precision and are in good agreement. Combining the two methods, an overall
precision of 3.5% in the absolute luminosity determination is reached. The
techniques used to transport the absolute luminosity calibration to the full
2010 data-taking period are presented.Comment: 48 pages, 19 figures. Results unchanged, improved clarity of Table 6,
9 and 10 and corresponding explanation in the tex
Absolute luminosity measurements with the LHCb detector at the LHC
Absolute luminosity measurements are of general interest for colliding-beam
experiments at storage rings. These measurements are necessary to determine the
absolute cross-sections of reaction processes and are valuable to quantify the
performance of the accelerator. Using data taken in 2010, LHCb has applied two
methods to determine the absolute scale of its luminosity measurements for
proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In
addition to the classic "van der Meer scan" method a novel technique has been
developed which makes use of direct imaging of the individual beams using
beam-gas and beam-beam interactions. This beam imaging method is made possible
by the high resolution of the LHCb vertex detector and the close proximity of
the detector to the beams, and allows beam parameters such as positions, angles
and widths to be determined. The results of the two methods have comparable
precision and are in good agreement. Combining the two methods, an overall
precision of 3.5% in the absolute luminosity determination is reached. The
techniques used to transport the absolute luminosity calibration to the full
2010 data-taking period are presented.Comment: 48 pages, 19 figures. Results unchanged, improved clarity of Table 6,
9 and 10 and corresponding explanation in the tex
Measurement of the ratio of branching fractions BR(B0 -> K*0 gamma)/BR(Bs0 -> phi gamma) and the direct CP asymmetry in B0 -> K*0 gamma
The ratio of branching fractions of the radiative B decays B0 -> K*0 gamma
and Bs0 phi gamma has been measured using an integrated luminosity of 1.0 fb-1
of pp collision data collected by the LHCb experiment at a centre-of-mass
energy of sqrt(s)=7 TeV. The value obtained is BR(B0 -> K*0 gamma)/BR(Bs0 ->
phi gamma) = 1.23 +/- 0.06(stat.) +/- 0.04(syst.) +/- 0.10(fs/fd), where the
first uncertainty is statistical, the second is the experimental systematic
uncertainty and the third is associated with the ratio of fragmentation
fractions fs/fd. Using the world average value for BR(B0 -> K*0 gamma), the
branching fraction BR(Bs0 -> phi gamma) is measured to be (3.5 +/- 0.4) x
10^{-5}.
The direct CP asymmetry in B0 -> K*0 gamma decays has also been measured with
the same data and found to be A(CP)(B0 -> K*0 gamma) = (0.8 +/- 1.7(stat.) +/-
0.9(syst.))%.
Both measurements are the most precise to date and are in agreement with the
previous experimental results and theoretical expectations.Comment: 21 pages, 3 figues, 4 table
Absolute luminosity measurements with the LHCb detector at the LHC
Absolute luminosity measurements are of general interest for colliding-beam
experiments at storage rings. These measurements are necessary to determine the
absolute cross-sections of reaction processes and are valuable to quantify the
performance of the accelerator. Using data taken in 2010, LHCb has applied two
methods to determine the absolute scale of its luminosity measurements for
proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In
addition to the classic "van der Meer scan" method a novel technique has been
developed which makes use of direct imaging of the individual beams using
beam-gas and beam-beam interactions. This beam imaging method is made possible
by the high resolution of the LHCb vertex detector and the close proximity of
the detector to the beams, and allows beam parameters such as positions, angles
and widths to be determined. The results of the two methods have comparable
precision and are in good agreement. Combining the two methods, an overall
precision of 3.5% in the absolute luminosity determination is reached. The
techniques used to transport the absolute luminosity calibration to the full
2010 data-taking period are presented.Comment: 48 pages, 19 figures. Results unchanged, improved clarity of Table 6,
9 and 10 and corresponding explanation in the tex
Measurements of long-range near-side angular correlations in TeV proton-lead collisions in the forward region
Two-particle angular correlations are studied in proton-lead collisions at a
nucleon-nucleon centre-of-mass energy of TeV, collected
with the LHCb detector at the LHC. The analysis is based on data recorded in
two beam configurations, in which either the direction of the proton or that of
the lead ion is analysed. The correlations are measured in the laboratory
system as a function of relative pseudorapidity, , and relative
azimuthal angle, , for events in different classes of event
activity and for different bins of particle transverse momentum. In
high-activity events a long-range correlation on the near side, , is observed in the pseudorapidity range . This
measurement of long-range correlations on the near side in proton-lead
collisions extends previous observations into the forward region up to
. The correlation increases with growing event activity and is found
to be more pronounced in the direction of the lead beam. However, the
correlation in the direction of the lead and proton beams are found to be
compatible when comparing events with similar absolute activity in the
direction analysed.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-040.htm
- …