2 research outputs found

    Depletion of Saccharomyces cerevisiae in psoriasis patients, restored by Dimethylfumarate therapy (DMF)

    Get PDF
    Background Psoriasis and inflammatory bowel disease (IBD) are chronic inflammatory diseases sharing similar pathogenic pathways. Intestinal microbial changes such as a decrease of bakers' yeast Saccharomyces cerevisiae have been reported in IBD, suggesting the presence of a gut-skin axis. Objective To investigate whether the S. cerevisiae abundance was altered in psoriasis patients versus healthy controls, and whether dimethylfumarate (DMF) interacted with this yeast. Methods Using qPCR, faecal samples were compared between psoriasis patients without DMF (n = 30), psoriasis patients with DMF (n = 28), and healthy controls (n = 32).Results Faecal S. cerevisiae abundance was decreased in psoriasis compared to healthy controls (p<0.001). Interestingly, DMF use raised S. cerevisiae levels (p<0.001). Gastrointestinal adverse-effects of DMF were correlated with a higher S. cerevisiae abundance (p = 0.010).In vitro, a direct effect of DMF on S. cerevisiae growth was observed. In addition, anti-Saccharomyces cerevisiae antibodies were not elevated in psoriasis. Conclusion The abundance of baker's yeast S. cerevisiae is decreased in psoriasis patients, but appears to b

    First steps towards combining faecal immunochemical testing with the gut microbiome in colorectal cancer screening

    Get PDF
    Objectives: Many countries use faecal immunochemical testing (FIT) to screen for colorectal cancer. There is increasing evidence that faecal microbiota play a crucial role in colorectal cancer carcinogenesis. We assessed the possibility of measuring faecal microbial features in FIT as potential future biomarkers in colorectal cancer screening. Methods: Bacterial stability over time and the possibility of bacterial contamination were evaluated using quantitative polymerase chain reaction analysis. Positive FIT samples (n = 200) of an average-risk screening cohort were subsequently analysed for universal 16S, and bacteria. Escherichia coli (E. coli), Fusobacterium nucleatum (F. nucleatum), Bacteroidetes and Faecalibacterium prausnitzii (F. prausnitzii) by qPCR. The results were compared with colonoscopy findings. Results: Faecal microbiota in FIT were stably measured up to six days for E. coli (p = 0.53), F. nucleatum (p = 0.30), Bacteroidetes (p = 0.05) and F. prausnitzii (p = 0.62). Overall presence of bacterial contamination in FIT controls was low. Total bacterial load (i.e. 16S) was significantly higher in patients with colorectal cancer and high-grade dysplasia (p = 0.006). For the individual bacteria tested, no association was found with colonic lesions. Conclusions: These results show that the faecal microbial content can be measured in FIT samples and remains stable for six days. Total bacterial load was higher in colorectal cancer and high-grade dysplasia. These results pave the way for further research to determine the potential role of microbiota assessment in FIT screening
    corecore